Limites de polynômes avec CoffeeScript

dimanche 29 septembre 2013
par  Alain BUSSER

Voici une séance de TD menée en BTS (séance d’une heure) avec CoffeeScript :

le cours sur les limites en html

Le plan est le suivant :

  • on définit une fonction polynôme f (ici, le trinôme x²+x+1, mais on peut modifier la fonction dans un des cadres CoffeeScript ci-dessous : on peut parler de cours interactif)
  • on demande les images de ∞ et -∞ par cette fonction : Les limites, évaluées numériquement ;
  • on constate que la limite en -∞ n’est pas affichée (NaN est une abréviation pour « not a number »)
  • on met x² en facteur pour lever l’indétermination
  • on cherche d’autres exemples où la technique précédente ne marche pas : Pour cela on va admettre des résultats du cours.

Limtes et formes indéterminées

I/ Polynômes

On vérifie sur un exemple le calcul des limites de polynômes: On choisit ƒ(x)=x2+2x+1 ( cette fonction peut être modifiée dans le script)

1) Limite en +∞

ƒ(x) est une somme de trois termes; or lorsque x tend vers +∞,

  • x2 tend vers +∞ (par produit)
  • 2x tend aussi vers +∞
  • 1 tend vers 1, comme eût dit Monsieur de La Palisse...
Alors la somme des trois termes tend aussi vers +∞ selon la règle heuristique ∞+∞+1=∞:

2) Limite en -∞

La méthode précédente ne permet pas de trouver la limite de ƒ en -∞:

En effet, il y a là une forme indéterminée: Lorsque x tend vers -∞,

  • x2 tend vers +∞
  • 2x tend vers -∞
  • 1 tend vers 1
Entre les deux premiers termes il y a forme indéterminée, et pour répondre il faut lever l'indétermination. Pour cela on peut mettre x2 en facteur dans l'expression de ƒ(x):

x2+2x+1=x2(1+2/x+1/x2)

On comprend pourquoi la factorisation a permis de lever l'indétermination, en enlevant dans le script ci-dessus le premier facteur x*x: La limite du second facteur est 1:

  • 1 tend vers 1
  • 1/x tend vers 0
  • 1/x2 tend vers 0
Donc le second facteur tend vers 1 lorsque x tend vers -∞; la limite de ƒ est alors ∞×1=∞ (éviter d'écrire ce calcul ailleurs qu'au brouillon, il n'a pas de sens tant qu'on n'a pas défini une multiplication sur l'infini).

Le calcul précédent se généralise, et amène à la règle suivante: La limite d'un polynôme est celle de son terme de plus haut degré.

3) Remarque

Dans le cas présent, il se trouve que ƒ(x)=(x+1)2 est un produit de deux facteurs tendant vers l'infini; ce qui permet également de conclure:

Cette méthode ne se généralise pas à tous les polynômes, ne serait-ce que parce qu'ils ne sont pas tous factorisables (théorème de Galois, 1830)

II/ Asymptotes

Les fractions rationnelles, ou quotients de polynômes, se traitent de façon similaire aux polynômes lorsqu'on cherche leur limite en ∞. Mais la fonction h(x)=1/x a également une limite intéressante en 0:

Autrment dit, lorsque x tend vers 0, son inverse tend vers ∞; plus précisément:

  • Lorsque x tend vers 0-, 1/x tend vers -∞
  • Lorsque x tend vers 0+, 1/x tend vers +∞

De même, lorsque x tend vers 0+, son logarithme népérien tend vers -∞:

Cette méthode permet aussi de trouver les limites de ln(x) en +∞, de ex en -∞ et en +∞ (essayer!). Mais les limites de x×ln(x) en 0+ et de ex/x en +∞ sont des formes indéterminées (0×∞); la mise en facteur du terme de plus haut degré ne permet pas de lever l'indétermination (quel est le terme de plus haut degré d'ailleurs?). Il ne reste alors plus qu'à les admettre et les apprendre par ♥


Commentaires