Épreuve pratique 2009, sujet 77
Les deux suites
On remplit le tableau avec le script suivant :
/*Programme tp 89a
*/
var an=9;
var bn;
for(n=0;n<=20;n=n+1){
bn=25/(an*an);
Println("|"+n+"|"+an+"|"+bn+"|");
an=(2*an+bn)/3;
}
Le tableau créé par ce script est le suivant :
n |
an |
bn |
0 |
9 |
0.30864197530864196 |
1 |
6.102880658436214 |
0.6712282924163218 |
2 |
4.292329869762916 |
1.3569186999644876 |
3 |
3.313859479830107 |
2.2765218928180135 |
4 |
2.9680802841594094 |
2.837845323037882 |
5 |
2.9246686304522336 |
2.9227163882749267 |
6 |
2.9240178830597983 |
2.9240174485190233 |
7 |
2.924017738212873 |
2.924017738212852 |
8 |
2.924017738212866 |
2.924017738212866 |
9 |
2.924017738212866 |
2.924017738212866 |
10 |
2.924017738212866 |
2.924017738212866 |
11 |
2.924017738212866 |
2.924017738212866 |
12 |
2.924017738212866 |
2.924017738212866 |
13 |
2.924017738212866 |
2.924017738212866 |
14 |
2.924017738212866 |
2.924017738212866 |
15 |
2.924017738212866 |
2.924017738212866 |
16 |
2.924017738212866 |
2.924017738212866 |
17 |
2.924017738212866 |
2.924017738212866 |
18 |
2.924017738212866 |
2.924017738212866 |
19 |
2.924017738212866 |
2.924017738212866 |
20 |
2.924017738212866 |
2.924017738212866 |
C’est suffisant pour conjecturer la convergence des deux suites et l’égalité de leurs limites.
Le cube de la suite b
Avec le rajout de la quatrième colonne, le script devient celui-ci :
/*Programme tp 77b
*/
var an=9;
var bn,cn;
for(n=0;n<=20;n=n+1){
bn=25/(Math.pow(an,2));
cn=Math.pow(an,3);
Println("|"+n+"|"+an+"|"+bn+"|"+cn+"|");
an=(2*an+bn)/3;
}
n |
an |
bn |
bn*bn*bn |
0 |
9 |
0.30864197530864196 |
729 |
1 |
6.102880658436214 |
0.6712282924163218 |
227.3027197820712 |
2 |
4.292329869762916 |
1.3569186999644876 |
79.08229634309063 |
3 |
3.313859479830107 |
2.2765218928180135 |
36.391693511543785 |
4 |
2.9680802841594094 |
2.837845323037882 |
26.147304964652832 |
5 |
2.9246686304522336 |
2.9227163882749267 |
25.01669886774798 |
6 |
2.9240178830597983 |
2.9240174485190233 |
25.000003715271735 |
7 |
2.924017738212873 |
2.924017738212852 |
25.00000000000018 |
8 |
2.924017738212866 |
2.924017738212866 |
25 |
9 |
2.924017738212866 |
2.924017738212866 |
25 |
10 |
2.924017738212866 |
2.924017738212866 |
25 |
11 |
2.924017738212866 |
2.924017738212866 |
25 |
12 |
2.924017738212866 |
2.924017738212866 |
25 |
13 |
2.924017738212866 |
2.924017738212866 |
25 |
14 |
2.924017738212866 |
2.924017738212866 |
25 |
15 |
2.924017738212866 |
2.924017738212866 |
25 |
16 |
2.924017738212866 |
2.924017738212866 |
25 |
17 |
2.924017738212866 |
2.924017738212866 |
25 |
18 |
2.924017738212866 |
2.924017738212866 |
25 |
19 |
2.924017738212866 |
2.924017738212866 |
25 |
20 |
2.924017738212866 |
2.924017738212866 |
25 |
Tableau complet
Encore une modification du script, pour ajouter le cube de la suite a :
/*Programme tp 77c
*/
var an=9;
var bn,cn;
for(n=0;n<=20;n=n+1){
bn=25/(Math.pow(an,2));
cn=Math.pow(an,3);
Println("|"+n+"|"+an+"|"+bn+"|"+cn+"|"+Math.pow(bn,3)+"|");
an=(2*an+bn)/3;
}
n |
an |
bn |
bn*bn*bn |
an*an*an |
0 |
9 |
0.30864197530864196 |
729 |
0.029401194111858132 |
1 |
6.102880658436214 |
0.6712282924163218 |
227.3027197820712 |
0.30242017574173063 |
2 |
4.292329869762916 |
1.3569186999644876 |
79.08229634309063 |
2.498397190300251 |
3 |
3.313859479830107 |
2.2765218928180135 |
36.391693511543785 |
11.798192925850278 |
4 |
2.9680802841594094 |
2.837845323037882 |
26.147304964652832 |
22.8542072577112 |
5 |
2.9246686304522336 |
2.9227163882749267 |
25.01669886774798 |
24.96663569698928 |
6 |
2.9240178830597983 |
2.9240174485190233 |
25.000003715271735 |
24.999992569458193 |
7 |
2.924017738212873 |
2.924017738212852 |
25.00000000000018 |
24.999999999999634 |
8 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
9 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
10 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
11 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
12 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
13 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
14 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
15 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
16 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
17 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
18 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
19 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
20 |
2.924017738212866 |
2.924017738212866 |
25 |
25 |
Commentaires