SINE COSINE TANGENT

-> degrees, radians

Trigonometric ratios in a right triangle

$$\cos C = \frac{length \ of \ the \ adjacent \ side}{length \ of \ the \ hypotenuse}$$

$$\sin C = \frac{length \ of \ the \ opposite \ side}{length \ of \ the \ hypotenuse}$$

$$\tan C = \frac{length \ of \ the \ opposite \ side}{length \ of \ the \ adjacent \ side}$$

Arccos arcsin arctan

"Arccos" is also called "the inverse cosine function". The inverse of "cos" is "arccos".

"Arccos A" means "the angle whose cosine is A".

 $cos~30^\circ~=~\frac{\sqrt{3}}{2}$ means " The cosine of 30 degrees is $\frac{\sqrt{3}}{2}$. arccos $\frac{\sqrt{3}}{2}=30$ means" The angle whose cosine is $\frac{\sqrt{3}}{2}$ is 30 degrees.

We use it when we know what the cosine of an angle is, and want to know the actual angle.

-> arcsin, arctan

Unit circle

The unit circle is a circle with a radius equal to one, and centered at the origin.

graph of cosine function

- continuous graph
- has a period of 2π
- domain = R
- range = [-1; 1]

graph of sine function

- continuous graph
- has a period of 2π
- domain = R
- range = [-1; 1]

graph of tangent function *pas pour les secondes*

- continuous graph but undefined when

$$\theta = \frac{\pi}{2} + k\pi, k \in Z$$

- has a period of π domain = $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in Z\}$
- range = R