1. Angles

An **angle** is a measure of the amount of rotation between two line segments. The 2 line segments (or **rays**) are named the **initial side** and **terminal side** as shown in the diagram.

If the rotation is anti-clockwise, the angle is positive. Clockwise rotation gives a negative angle.

Examples

Clockwise, negative angle.

Angles are commonly measured in degrees or radians.

(There is another unit for measuring angles, called **gradians**. The right angle is divided into 100 gradians. Gradians are used by surveyors, but not commonly used in mathematics. However, you will see a "grad" mode on most calculators.)

Standard Position of an Angle

An angle is in **standard position** if the initial side is the positive *x*-axis and the vertex is at the origin. The 2 examples given above are in standard position.

We will use r, the length of the hypotenuse, and the lengths x and y when defining the trigonometric ratios in the next section.

Degrees, Minutes and Seconds

The Babylonians (who lived in modern day Iraq from 5000 BC to 500 BC) used a base 60 system of numbers. From them we get the division of time, latitude & longitude and angles in multiples of 60.

Similar to the way hours, minutes and seconds are divided, the **degree** is divided into 60 minutes (') and a minute is divided into 60 seconds (").We can write this form as:DMS or ° ' ".

2. Sine, Cosine, Tangent.

For the angle θ in a right-angled triangle as shown, we name the sides as:

- **hypotenuse** (the side opposite the right angle)
- **adjacent** (the side "next to" θ)
- **opposite** (the side furthest from the angle)

We define the three trigonometrical ratios sine θ , cosine θ , and tangent θ as follows (we normally write these in the shortened forms sin θ , cos θ , and tan θ):

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} \tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

To remember these, many people use SOH CAH TOA, that is:

Sin θ = Opposite/Hypotenuse,

 $\cos \theta = Adjacent/Hypotenuse$, and

Tan θ = **O**pposite/Adjacent

The Trigonometric Functions on the x-y Plane

For an angle in <u>standard position</u>, we define the trigonometric ratios in terms of *x*, *y* and *r*:

$$\sin\theta = \frac{y}{r}\cos\theta = \frac{x}{r}\tan\theta = \frac{y}{x}$$

Notice that we are still defining

 $\sin \theta$ as opp/hyp; $\cos \theta$ as adj/hyp, and $\tan \theta$ as opp/adj,

but we are using the specific x-, y- and r-values defined by the point (x, y) that the terminal side passes through. We can choose any point on that line, of course, to define our ratios.

To find *r*, we use Pythagoras' Theorem, since we have a right angled triangle:

 $r = \sqrt{x^2 + y^2}$

3. The Right Triangle and Applications

Many problems involve right triangles. We often need to use the trigonometric ratios to solve such problems.

Example 1 - Finding the Height

Find *h*.

Answer :

Example 2 - Solving Triangles

Solve the triangle ABC, given that $A = 35^{\circ}$ and c = 15.67.

Answer :

To "solve" a triangle means to find the unknown sides and angles. In this example, we need to find a and b and angle B. Note $C = 90^{\circ}$.

Angles of Elevation and Depression

In surveying, the **angle of elevation** is the angle from the horizontal looking **up** to some object:

The **angle of depression** is the angle from the horizontal looking **down** to some object:

Example 3:

The angle of elevation of an aeroplane is 23° . If the aeroplane's altitude is 2500 m, how far away is it?

Answer :

Example 4

You can walk across the Sydney Harbour Bridge and take a photo of the Opera House from about the same height as top of the highest sail.

This photo was taken from a point about 500 m horizontally from the Opera House and we observe the waterline below the highest sail as having an angle of depression of 8°. How high above sea level is the highest sail of the Opera House?

Answer :