TRIGONOMETRY

1. Angles

An angle is a measure of the amount of rotation between two line segments. The 2 line segments (or rays) are named the initial side and terminal side as shown in the diagram.

If the rotation is anti-clockwise, the angle is positive. Clockwise rotation gives a negative angle.

Examples

Anti-clockwise, positive angle.

Clockwise, negative angle.

Angles are commonly measured in degrees or radians.
(There is another unit for measuring angles, called gradians. The right angle is divided into 100 gradians. Gradians are used by surveyors, but not commonly used in mathematics. However, you will see a "grad" mode on most calculators.)

Standard Position of an Angle

An angle is in standard position if the initial side is the positive x-axis and the vertex is at the origin. The 2 examples given above are in standard position.

We will use r, the length of the hypotenuse, and the lengths x and y when defining the trigonometric ratios in the next section.

Degrees, Minutes and Seconds

The Babylonians (who lived in modern day Iraq from 5000 BC to 500 BC) used a base 60 system of numbers. From them we get the division of time, latitude \& longitude and angles in multiples of 60 .

Similar to the way hours, minutes and seconds are divided, the degree is divided into 60 minutes (') and a minute is divided into 60 seconds (").We can write this form as:DMS or ${ }^{\circ} \mathrm{I}$ ".

2. Sine, Cosine, Tangent.

TRIGONOMETRY

For the angle θ in a right-angled triangle as shown, we name the sides as:

- hypotenuse (the side opposite the right angle)
- adjacent (the side "next to" θ)
- opposite (the side furthest from the angle)

We define the three trigonometrical ratios sine $\boldsymbol{\theta}, \operatorname{cosine} \boldsymbol{\theta}$, and tangent $\boldsymbol{\theta}$ as follows (we normally write these in the shortened forms $\sin \theta, \cos \theta$, and $\boldsymbol{\operatorname { t a n }} \theta$):

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

To remember these, many people use SOH CAH TOA, that is:
Sin $\theta=\mathbf{O p p o s i t e} /$ /Hypotenuse,
$\boldsymbol{\operatorname { C o s }} \theta=\mathbf{A d j a c e n t} /$ Hypotenuse, and
$\boldsymbol{T a n} \theta=\mathbf{O p p o s i t e} / \mathbf{A d j a c e n t}$

The Trigonometric Functions on the $\boldsymbol{x}-\boldsymbol{y}$ Plane

For an angle in standard position, we define the trigonometric ratios in terms of x, y and r :

$$
\sin \theta=\frac{y}{r} \cos \theta=\frac{x}{r} \tan \theta=\frac{y}{x}
$$

TRIGONOMETRY

Notice that we are still defining
$\sin \theta$ as opp/hyp; $\cos \theta$ as adj/hyp, and $\tan \theta$ as opp/adj,
but we are using the specific x-, y - and r-values defined by the point (x, y) that the terminal side passes through. We can choose any point on that line, of course, to define our ratios.

To find r, we use Pythagoras' Theorem, since we have a right angled triangle:

$$
r=\sqrt{x^{2}+y^{2}}
$$

3. The Right Triangle and Applications

Many problems involve right triangles. We often need to use the trigonometric ratios to solve such problems.

Example 1 - Finding the Height

Find h.

Answer :

TRIGONOMETRY

Example 2 - Solving Triangles

Solve the triangle ABC , given that $A=35^{\circ}$ and $c=15.67$.

Answer :
To "solve" a triangle means to find the unknown sides and angles. In this example, we need to find a and b and angle B. Note $C=90^{\circ}$.

TRIGONOMETRY

Angles of Elevation and Depression

In surveying, the angle of elevation is the angle from the horizontal looking up to some object:

The angle of depression is the angle from the horizontal looking down to some object:
horizontal

angle of depression

Example 3:

The angle of elevation of an aeroplane is 23°. If the aeroplane's altitude is 2500 m , how far away is it?

TRIGONOMETRY

Answer :

Example 4

You can walk across the Sydney Harbour Bridge and take a photo of the Opera House from about the same height as top of the highest sail.

This photo was taken from a point about 500 m horizontally from the Opera House and we observe the waterline below the highest sail as having an angle of depression of 8°. How high above sea level is the highest sail of the Opera House?

Answer :

