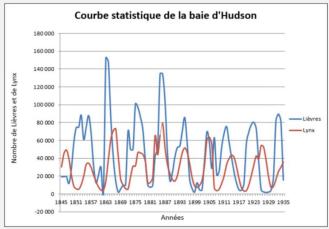
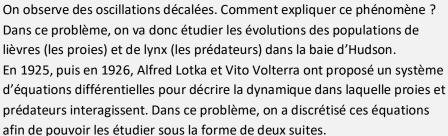
Depuis le milieu du 19ème siècle, la Compagnie de la baie d'Hudson au Canada a permis de récolter des données sur les populations de deux espèces : le lièvre et le lynx du Canada.

Ces données ont été représentées ci-dessous :





On note x_n le nombre de lièvres l'année n, et y_n le nombre de lynx l'année n. On suppose que $x_0=200\,$ et que $y_0=50.$

Alfred Lotka

Vito Volterra

PARTIE 1 Mise en équation du problème

- 1) On sait que la population de lièvres sans lynx augmente de $5\,\%$ par an. Que vaudrait x_1 s'il n'y avait pas de lynx ?
- 2) On sait que la population de lynx sans lièvre diminue de 3 % par an. Que vaudrait y_1 s'il n'y avait pas de lièvre ?
- 3)a) Combien y a-t'il de rencontres possibles entre x_n lièvres et y_n lynx?
- 3)b) Parmi ces rencontres possibles, seules 0,1 % ont effectivement lieu.

Lors des rencontres entre lièvres et lynx, les lièvres sont mangés à chaque fois par les lynx, et leur population diminue. En outre, le fait de manger des lièvres permet aux lynx de se reproduire, et le nombre de nouveaux lynx est estimé à 20 % du nombre de lièvres dévorés.

Justifier que pour tout $n \in \mathbb{N}$:

$$\begin{cases} x_{n+1} = 1,05 \ x_n - 0,001 \ x_n y_n \\ y_{n+1} = 0,97 \ y_n + 0,0002 \ x_n y_n \end{cases}$$

4) Calculer x_1 et y_1 .

PARTIE 2 Simulation à l'aide d'un tableur

1)

1	Α	В	С
1	n	xn	yn
2	0	200	50
3	1		
4	2	27	
5	3		

Quelles formules doit-on taper puis étendre dans les cellules B3 et C3 ?

- 2) Créer ce tableau en allant jusqu'à n=400, et représenter sur un même graphique les évolutions du nombre de lièvres et de lynx en fonction du temps.
- 3) Commenter ce graphique.
- 4) Faire varier x_0 et y_0 et commenter le résultat.
- 5) Recherche d'un point d'équilibre
- 5)a) Vérifier que pour tout $n \in \mathbb{N}$:

$$\begin{cases} x_{n+1} - x_n = x_n (0.05 - 0.001 \ y_n) \\ y_{n+1} - y_n = y_n (-0.03 + 0.0002 \ x_n) \end{cases}$$

- $\begin{cases} x_{n+1}-x_n=x_n(0,05-0,001\ y_n)\\ y_{n+1}-y_n=y_n(-0,03+0,0002\ x_n) \end{cases}$ 5)b) Quelles sont les valeurs de x_0 et y_0 pour lesquelles les suites (x_n) et (y_n) sont constantes ?
- 5)c) Illustrer ce résultat grâce au tableur.