THE PYIHACOREAN THEOREM

The Pythagorean Theorem
If $A B C$ is a right-angled triangle with
$\angle B$ the right angle,
then $b^{2}=c^{2}+a^{2}$.

That means: "The square of the hypotenuse of a right-angled triangle is equal to the sum of the squares of the lengths of the other two sides".

total area $=$ area of the four triangles + area of middle square

$$
\begin{gathered}
(a+c)^{2}=4\left(\frac{a c}{2}\right)+b^{2} \\
a^{2}+2 a c+c^{2}=2 a c+b^{2} \\
a^{2}+c^{2}=b^{2}
\end{gathered}
$$

applications

* The discovery of the Pythagorean Theorem led the Greeks to prove the existence of numbers that could not be expressed as rational numbers, such as $\sqrt{2}$.
* The Pythagorean Theorem is used in calculating the distance between two points in both two and three dimensional space.

Suppose that $A\left(x_{A}, y_{A}\right)$ and $C\left(x_{C}, y_{C}\right)$ are two points in the plane.
Consider the right-angled triangle ABC where $B\left(x_{A}, y_{C}\right)$.
By the Pythagorean Theorem:
$A C^{2}=A B^{2}+B C^{2}$
$A C^{2}=\left(y_{C}-y_{A}\right)^{2}+\left(x_{C}-x_{A}\right)^{2}$
Hence:

$$
A C=\sqrt{\left(y_{C}-y_{A}\right)^{2}+\left(x_{C}-x_{A}\right)^{2}} .
$$

Converse of the Pythagorean Theorem

$$
\begin{gathered}
\text { If } b^{2}=c^{2}+a^{2}, \\
\text { then } \angle B \text { is a right angle. }
\end{gathered}
$$

Given the lengths of the sides of a triangle, we can tell whether or not the triangle is right angled.

