THE PYTHAGOREAN THEOREM

The Pythagorean Theorem

If ABC is a right-angled triangle with $\angle B$ the right angle, then b² = c² + a².

That means: "The square of the hypotenuse of a right-angled triangle is equal to the sum of the squares of the lengths of the other two sides".

total area = area of the four triangles + area of middle square

$$(a+c)^{2} = 4\left(\frac{ac}{2}\right) + b^{2}$$
$$a^{2} + 2ac + c^{2} = 2ac + b^{2}$$
$$\boxed{a^{2} + c^{2} = b^{2}}$$

applications

* The discovery of the Pythagorean Theorem led the Greeks to prove the existence of numbers that could not be expressed as rational numbers, such as $\sqrt{2}$.

* The Pythagorean Theorem is used in calculating the distance between two points in both two and three dimensional space.

Suppose that $A(x_A, y_A)$ and $C(x_C, y_C)$ are two points in the plane. Consider the right-angled triangle ABC where $B(x_A, y_C)$. By the Pythagorean Theorem: $AC^2 = AB^2 + BC^2$ $AC^2 = (y_C - y_A)^2 + (x_C - x_A)^2$ Hence: $AC = \sqrt{(y_C - y_A)^2 + (x_C - x_A)^2}$.

application

Given the lengths of the sides of a triangle, we can tell whether or not the triangle is right angled.