For the intercept theorem and its converse, we will suppose that A is the intersection point of two lines d and d ', that M and B are two points of d distinct from A, and that N and C are two points of d' distinct from A.

$$
\begin{aligned}
& \text { If the lines } \mathrm{MN} \text { and } \mathrm{BC} \text { are parallel, } \\
& \text { then } \frac{A M}{A B}=\frac{A N}{A C}=\frac{M N}{B C} \text {. }
\end{aligned}
$$ The intercept theorem

That means "If a line is parallel to one side of a triangle, then it divides the other two sides proportionally". See also "similar triangles" : two triangles are similar if their corresponding angles equal and their corresponding sides are in proportion.

Converse of the intercept theorem

If $\frac{A M}{A B}=\frac{A N}{A C}$ and if points $\mathrm{A}, \mathrm{M}, \mathrm{B}$ et $\mathrm{A}, \mathrm{N}, \mathrm{C}$ are in the same order,
then the lines $M N$ and $B C$ are parallel.

That means "If a line divides two sides of a triangle in the same ratio, then the line is parallel to the third side of the triangle".

If M and N are the midpoints of the sides $A B$ and $A C$,
then the segment line MN is parallel to the side $B C$ and is equal to half its length.

