Let $f(x)=x^{3}-2 x^{2}+3 x-4$.

1) Find a root of the equation $f(x)=0$ without using the calculator. (Hint: Good luck!)
2) Graph the equation $y=f(x)$ on your calculator for $x \in[0,4]$. Sketch the graph of $f$ :

We deduce that there is one solution in the interval $[0 ; 4]$. Give a first approximation of the solution of the equation above.

## 3) The bisection method

3) a) Calculate $f(1)$ and $f(2)$.

As expected $f(1)<0$ and $f(2)>0$, therefore, since $f$ is continuous,
 by the Intermediate Value Theorem, $f$ has a zero in [1,2].
3)b) Now, calculate $f(1.5)$.
$f(1.5)<0$, so there must be a solution between 1.5 and 2 and
 you've narrowed down your search area to [1.5, 2].
3)c) Now, calculate $f(1.75)$.

Give the sign of $f(1.75)$ and conclude.


## THE INTERMEDIATE VALUE THEOREM

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function, and $c$ be a real number.

$$
\left\lvert\, \begin{gathered}
\text { If } f(a)<c<f(b) \\
\text { or if } f(a)>c>f(b)
\end{gathered}\right. \text { then there exists an } x \in[a, b]
$$



