THE BISECTION METHOD

preliminary exercise

Let $f(x) = x^3 - 2x^2 + 3x - 4$. 1) Find a root of the equation f(x) = 0 without using the calculator. (Hint: Good luck!)

2) Graph the equation y = f(x) on your calculator for $x \in [0, 4]$. Sketch the graph of f:

We deduce that there is one solution in the interval [0; 4]. Give a first approximation of the solution of the equation above.

As expected f(1) < 0 and f(2) > 0, therefore, since f is continuous, by the Intermediate Value Theorem, f has a zero in [1, 2].

3)b) Now, calculate f(1.5).

f(1.5) < 0, so there must be a solution between 1.5 and 2 and you've narrowed down your search area to [1.5, 2].

3)c) Now, calculate f(1.75).

Give the sign of f(1.75) and conclude.

THE INTERMEDIATE VALUE THEOREM

Let $f: [a, b] \to \mathbb{R}$ be a continuous function, and c be a real number.

| If f(a) < c < f(b)or if f(a) > c > f(b) then there exists an $x \in [a, b]$ such that f(x) = c.

Note that the Intermediate Value Theorem doesn't say anything about how many times f(x) takes the value c. There might be many values of x in the interval [a, b] such that f(x) = c. All the theorem says is that there is at least one.

