SOLVING SYSTEMS OF LINEAR EOUATIONS IN TWO VARIABLES

Definitions
The solution of a system of equations are the values of the variables that make both equations correct at the same time. (You can also say:"A solution of a system of a linear equation is an ordered pair that satisfies all equations in the system.")
A system of linear equations can have exactly one solution, no solution, or infinitely many solutions.

Solving a system by the addition method

$$
\begin{array}{c|l}
\left\{\begin{array}{l}
2 x+5 y=8 \\
-x+3 y=7
\end{array}\right. & \begin{array}{l}
\text { Choose a variable to } \\
\text { eliminate. }
\end{array} \\
\left\{\begin{array}{l}
2 x+5 y=8 \\
-x+3 y=7 \quad \begin{array}{l}
\text { Multiply one or both } \\
\text { equations by an }
\end{array} \\
\text { appropriate nonzero } \\
\text { constant so that the sum of } \\
\text { the coefficients of one of } \\
\text { the variables is zero. }
\end{array}\right. \\
\begin{array}{l}
2 x+5 y=8 \\
-2 x+6 y=14 \\
11 y=22
\end{array} & \begin{array}{l}
\text { Add the two equations } \\
\text { together to obtain an } \\
\text { equation in one variable. }
\end{array} \\
\frac{11}{11} y=\frac{22}{11} & \begin{array}{l}
\text { Solve the equation in one } \\
\text { variable. }
\end{array} \\
y=2 \\
2 x+5 \times 2=8 & \begin{array}{l}
\text { Substitute the value } \\
\text { obtained into either of the } \\
\text { original equations to solve } \\
\text { for the other variable. }
\end{array} \\
2 x+10=8 & 2 x=-2 \\
x=-1
\end{array}
$$

The ordered pair formed is the solution to the system.
We can use set notation to describe the solution: $\{(-1,2)\}$ (say "the set consisting of the ordered pair $(-1,2)$ "). You can check the solution by substituting the pair of values into both equations of the original system.

Particular cases

systems with no solution

$$
\begin{array}{r}
\left\{\begin{array}{c}
2 x+y=7 \\
-2 x-y=8
\end{array}\right. \\
\hline 0=15
\end{array}
$$

" $0=15$ " is a false statement, therefore the system is inconsistent, and there is no solution.
NB: If these equations were graphed, we would have two parallel lines.

Solving a system by the substitution

 method| $\left\{\begin{array}{l} 2 x+5 y=8 \tag{1}\\ -x+3 y=7 \end{array}\right.$ $\begin{gathered} (2) \Rightarrow \quad-x=7-3 y \\ x=-7+3 y \end{gathered}$ $(1) \Rightarrow \quad 2 \times(-7+3 y)+5 y=8$ | Choose an equation and solve for one variable in terms of the other variable. (We could have solved for y, but we chose the easier case to avoid |
| :---: | :---: |
| $\begin{gathered} -14+11 y=8 \\ 11 y=8+14 \end{gathered}$ | Substitute the expression into the other equation. |
| $11 y=22$ | Solve the equation in one variable. |
| $\begin{gathered} (2) \Rightarrow \quad x=-7+3 \times 2 \\ x=-1 \end{gathered}$ | Substitute the value found into one of the original equations to find the value of the remaining variable. |

