Sophus et Sofus Variables et POO

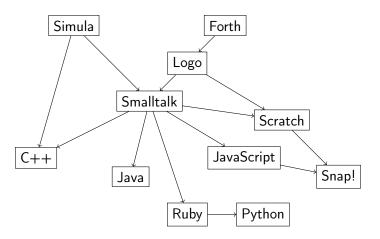
Alain Busser

3 février 2021

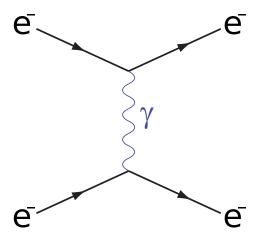
Programme de NSI Terminale

Contenus	Capacités attendues	Commentaires
Vocabulaire de la programmation objet : classes, attributs, méthodes, objets.	d'une classe. Ac- céder aux attributs	On n'aborde pas ici tous les aspects de la programmation objet comme le polymorphisme et l'héritage.

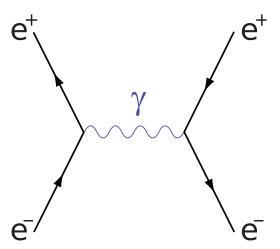
Naissance de la POO



Les objets de Simula Diagramme de Feynman



Rotation du diagramme Diagramme de Feynman



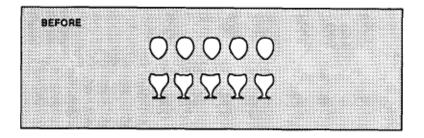
Alan Kay Prix Turing en 2003

Étudiant de Papert

- Smalltalk (POO)
- fenêtres, bureau...
- ordinateur portable
- Atari, Apple, HP, Walt Disney...
- Mme Kay était l'actrice principale de Tron

Un ensemble d'objets communiquant entre eux est un micromonde.

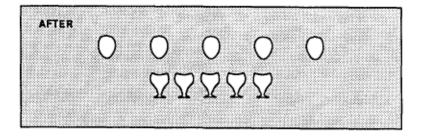
Piaget selon Minsky Y a-t-il plus d'œufs ou de coquetiers ?



• 5 ans : autant de chaque

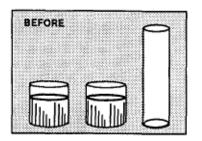
• 7 ans : autant de chaque

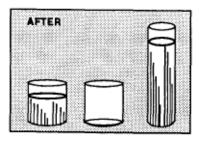
Piaget selon Minsky Y a-t-il plus d'œufs ou de coquetiers ?



- 5 ans : plus d'œufs que de coquetiers
- 7 ans : autant de chaque

Piaget selon Minsky Principe d'invariance (Papert)





Il y en a plus après, qu'avant.

Logo Seymour Papert

Deux définitions en Logo

- TO procedure
- CALL variable

Exemple

CALL 3.14159265 "pi" CALL 2.25 "R"

Alors

2 * :pi * :R est plus simple que 2 * 3.14159265 * 2.25

Logo Seymour Papert

Trois applications de Logo à l'enseignement de l'analyse :

- calcul intégral
- équations différentielles
- invariants topologiques

```
CALL : TOTAL + FIELD "TOTAL"
```


Programme de mathématiques Première technologique

Le programme vise la consolidation des notions de variable[..] Capacités attendues Variables :

- utiliser un générateur de nombres aléatoires entre 0 et 1 pour simuler une loi de Bernoulli de paramètre p;
- utiliser la notion de compteur ;
- utiliser le principe d'accumulateur pour calculer une somme, un produit.

Attribut

tortue	variable	
abscisse tortue.x		
 ordonnée tortue.y 	valeur de la variable	
direction	variable.valeur	
tortue.heading		

Lorsqu'une variable se réfère à sa propre valeur on écrit self.valeur

Méthode Accesseur

tortue	variable
abscisse	
<pre>tortue.getposition()</pre>	
 ordonnée 	valeur de la variable
tortue.getposition()	variable.repr()
direction tortue.angle()	

```
def __repr__(self):
return str(self.valeur)
```

permet de faire print(variable)

Méthode

Transformateur (ou mutateur)

tortue	variable
avancer	augmenter
tortue.forward()	${\tt variable.augmentetoide()}$
reculer tortue.backward()	diminuer variable.diminuetoide()
• tourner	• affecter
tortue.left()	<pre>variable.prendlavaleur()</pre>

Augmentation

```
def augmente_toi_de(self,d=1,mode=None):
    if mode == pourcents:
        self.valeur *= 1+d/100
    else:
        self.valeur += d
```

Diminution

```
def diminue_toi_de(self,d=1,mode=None):
    if mode == pourcents:
        self.valeur *= 1-d/100
    else:
        self.valeur -= d
```

Autres méthodes

```
def multiplie toi par(self, d=2, mode=None):
    if mode == pourcents:
        self.valeur *= d/100
    else:
        self.valeur *= d
def divise toi par(self, d=2, mode=None):
    if mode == pourcents:
        self.valeur /= d/100
    else:
        self.valeur /= d
```

Autres méthodes

```
def eleve toi(self,p=au carre):
        self.valeur **= p
def inverse toi(self):
        self.valeur = 1/self.valeur
def double toi(self):
        self.valeur *= 2
def triple toi(self):
        self.valeur *= 3
def decuple toi(self):
        self valeur *= 10
```

Objet et Classe

```
class Variable():
    def __init__(self,v):
        self.valeur = float(v)
    def __repr__(self):
        return str(self.valeur)
```

Collatz

```
u = Variable(13)
while u.valeur != 1:
    if u.est_impair():
        u.triple_toi()
        u.augmente_toi_de(1)
    u.divise_toi_par(2)
```

Intégrale méthode des rectangles

```
from sofus import *
def integrale(f,a,b):
    dx = 0.0001
    x = Variable(a)
    S = Variable(0)
    while x.valeur < b:
        S.augmente_toi_de(f(x.valeur)*dx)
        x.augmente_toi_de(dx)
    return S.valeur</pre>
```

Intégrale méthode des rectangles

```
Définir intégrale avec : f, a, b
mettre 0.0001 dans dx
mettre a dans x
mettre 0 dans S
répéter tant que ▼ ( x < b
faire
            augmenter Sv de ( f(x)×dx "
      [+]:
           augmenter x de dx
                     renvoyer
```

Matrices Similitude itérée

```
mettre 1 -0.0001 dans M v
0.0001 1

mettre 1 dans U v
0

répéter 10 fois
faire multiplier U v à gauche par M v
```

$$\overrightarrow{U} \left(\begin{array}{c} 0,99999955 \\ 0,00099999988 \end{array} \right)$$

Matrices Rotation

```
mettre 1 -0.0001 dans M v
0.0001 1

mettre 1 dans U v
0

répéter 10 fois
faire multiplier U à gauche par M v

normer U v
```

$$\overrightarrow{U} \left(\begin{array}{c} 0,99999955 \\ 0,00099999988 \end{array} \right) \ \overrightarrow{\overrightarrow{U}} \left(\begin{array}{c} 0,99999995 \\ 0,00099999983 \end{array} \right)$$

Algorithme CORDIC COordinate Rotation Digital Computer

(Jack Volder 1959) Pour appliquer à $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ une rotation de 0,25 radian, on peut lui appliquer

- 2 rotations d'un déciradian
- 5 rotations d'un centiradian

$$\left(\begin{array}{ccc} \cos(0,25) & -\sin(0,25) \\ \sin(0,25) & \cos(0,25) \end{array} \right) = \\ \left(\begin{array}{ccc} \cos(0,1) & -\sin(0,1) \\ \sin(0,1) & \cos(0,1) \end{array} \right)^2 \times \left(\begin{array}{ccc} \cos(0,01) & -\sin(0,01) \\ \sin(0,01) & \cos(0,01) \end{array} \right)^5$$

Groupe de Lie

L'ensemble des matrices $\begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$ est le groupe $\mathcal{SO}_2(\mathbb{R})$.

Un groupe de Lie est un groupe tel que

- Pour tout $a, x \mapsto a \times x$ est différentiable
- Pour tout $b, x \mapsto x \times b$ est différentiable
- $x \mapsto x^{-1}$ est différentiable

Algorithme CORDIC

COordinate Rotation Digital Computer

Pour appliquer à $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ une similitude de 0,25 radian, on peut lui appliquer

- 2 similitudes d'un déciradian
- 5 similitudes d'un centiradian

$$\begin{pmatrix} 1 & -\tan(0,25) \\ \tan(0,25) & 1 \end{pmatrix} \propto$$

$$\begin{pmatrix} 1 & -\tan(0,1) \\ \tan(0,1) & 1 \end{pmatrix}^2 \times \begin{pmatrix} 1 & -\tan(0,01) \\ \tan(0,01) & 1 \end{pmatrix}^5$$
 Une fois $T = \tan(t)$ calculé, on en déduit $\cos(t) = \sqrt{\frac{1}{1+T^2}}$ et $\sin(T) = T \times \cos(t)$

Espace tangent

L'ensemble des
$$\begin{pmatrix} 1 \\ \tan(t) \end{pmatrix}$$
 est une droite : l'espace tangent au groupe de Lie, en $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
$$\begin{pmatrix} 1 & -\tan(t) \\ \tan(t) & 1 \end{pmatrix} = I + \tan(t) \times \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 L'ensemble des $\begin{pmatrix} 0 & -z \\ z & 0 \end{pmatrix}$ est un espace vectoriel : l'algèbre de Lie \mathfrak{so}_2 du groupe de Lie \mathcal{SO}_2 (\mathbb{R}).
$$\begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix} \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix} = \begin{pmatrix} -ab & 0 \\ 0 & -ab \end{pmatrix}$$

Algèbre de Lie

[A,B] = AB - BA $B \mapsto [A,B]$ est l'adjointe de A notée ad_A $(A,B) \mapsto tr(ad_A \circ ad_B)$ est une forme bilinéaire : la forme de Killing Si $\exists B \in \mathfrak{g}, \forall A \in \mathfrak{g}, [A,B] = \alpha(A) \times B$, la forme linéaire α s'appelle une racine de \mathfrak{g}

Le groupe des symétries des racines s'appelle le groupe de Weyl de l'algèbre de Lie.

Système de racines

Définition

Un ensemble de vecteurs α d'un e.v. euclidien E est un système de racines si

- ullet L'e.v. engendré par les lpha est E
- Les seuls vecteurs du système qui sont colinéaires à α sont α et $-\alpha$
- le système de racines est symétrique par rapport à l'hyperplan perpendiculaire à α
- le produit scalaire de deux racines α et β est le multiple du carré scalaire de α par un demi-entier.

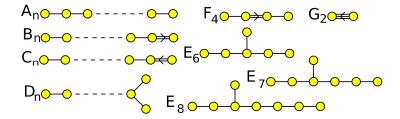
L'angle entre deux racines ne peut être que $\frac{\pi}{2}$, $\frac{\pi}{3}$, $\frac{\pi}{4}$, $\frac{\pi}{6}$ ou leur supplémentaire.

Diagramme de Dynkin

Eugene Dynkin associe à chaque système de racines, un multigraphe, tel que

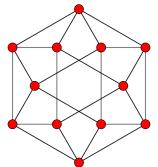
- chaque sommet du graphe représente une racine
- si l'angle entre deux racines est $\frac{\pi}{2}$, il n'y a pas d'arête entre les deux sommets
- si l'angle entre deux racines est $2\frac{\pi}{3}$, il y a une arête entre les sommets
- si l'angle entre deux racines est $3\frac{\pi}{4}$, il y a une double arête entre les sommets
- si l'angle entre deux racines est $5\frac{\pi}{6}$, il y a une triple arête entre les sommets

Classification des groupes de Lie Il n'existe pas d'autres diagrammes de Dynkin que



$$D_3=A_3$$
 algèbre de Lie $\mathfrak{so}(6)$ groupe de Lie $\mathbb{SO}(6)$

Le système de racines est un <u>cuboctaèdre</u> :



 D_4 algèbre de Lie $\mathfrak{so}(8)$ groupe de Lie $\mathbb{SO}(8)$

Le système de racines est un $\underline{icosit\'etrachore}$:

