SEQUENCES

In a mountain resort, a cliff is going to be set up to create a climbing site.

Two businesses A and B have been contacted and made the following offers:

Business A: The first metre to be set up, costs $20 \, \pounds$, and each extra metre costs $5 \, \pounds$ more than the previous one. Business B: The first metre to be set up, costs $20 \, \pounds$, and each extra metre costs $10 \, \%$ more than the previous one.

Let u_n be the price of the *n*th metre to be set up and S_n be the price of the equipment of a cliff *n* metres high by business *A*.

Let v_n be the price of the *n*th metre to be set up and R_n be the price of the equipment of a cliff *n* metres high by business *B*.

- 1. a. Give u_1, u_2, u_3 .
 - b. Give a recursive rule for u_n . What is the nature of the sequence u_n ? Give an explicit rule for u_n .
 - c. Give S_1, S_2, S_3 . Write S_n in terms of u_n . What can you say about S_n ? Write S_n in terms of n.
- 2. a. Give v_1, v_2, v_3 . Round your result to the nearest pound.
 - b. Give a recursive rule for v_n . What is the nature of the sequence v_n ? Give an explicit rule for v_n .
 - c. Give R_1, R_2, R_3 . Write R_n in terms of v_n . What can you say about R_n ? Write R_n in terms of n.
- 3. What is the price to set up a cliff 50 metres high by the two businesses? Round to the nearest pound.
- 4. Figure out using your graphing calculator when Business A is more interesting than Business B.

SEQUENCES

Bac 2009 Créteil-Paris-Versailles

In a mountain resort, a cliff is going to be set up to create a climbing site.

Two businesses A and B have been contacted and made the following offers:

Business A: The first metre to be set up, costs $20 \, \pounds$, and each extra metre costs $5 \, \pounds$ more than the previous one. Business B: The first metre to be set up, costs $20 \, \pounds$, and each extra metre costs $10 \, \%$ more than the previous one.

Let u_n be the price of the *n*th metre to be set up and S_n be the price of the equipment of a cliff *n* metres high by business *A*.

Let v_n be the price of the *n*th metre to be set up and R_n be the price of the equipment of a cliff *n* metres high by business *B*.

- 1. a. Give u_1, u_2, u_3 .
 - b. Give a recursive rule for u_n . What is the nature of the sequence u_n ? Give an explicit rule for u_n .
 - c. Give S_1, S_2, S_3 . Write S_n in terms of u_n . What can you say about S_n ? Write S_n in terms of n.
- 2. a. Give v_1, v_2, v_3 . Round your result to the nearest pound.
 - b. Give a recursive rule for v_n . What is the nature of the sequence v_n ? Give an explicit rule for v_n .
 - c. Give R_1, R_2, R_3 . Write R_n in terms of v_n . What can you say about R_n ? Write R_n in terms of n.
- 3. What is the price to set up a cliff 50 metres high by the two businesses? Round to the nearest pound.
- 4. Figure out using your graphing calculator when Business A is more interesting than Business B.