SEQUENCES

9enera case	erthmetic seouences	geometita seouences
u_{n} is the nth term n is the term number $\left[\begin{array}{c} \text { the starting value } \\ \text { the initial term } \\ \text { the first term } \end{array}\right]$	Each term is obtained from the previous one by adding a constant. This constant is called the common difference and is denoted by " d ".	Each term is obtained from the previous one by multiplying by a constant. This constant is called the common ratio and is denoted by " r ".
$\left[\begin{array}{c}\text { to display } \\ \text { to generate }\end{array}\right]$ a sequence, you can : * give $\left[\begin{array}{c}\text { a formula } \\ \text { an expression } \\ \text { a rule }\end{array}\right]$ for $\left[\begin{array}{c}\text { the general term } \\ \text { the } n \text {th term }\end{array}\right]$ * give a recurrence relation (In this case, a term of the sequence is determined in terms of some of the preceding terms.)	Formula ($n \geq 1$) $u_{n}=u_{1}+(n-1) d$ Recurrence relation $u_{n+1}=u_{n}+d$	Formula ($n \geq 1$) $u_{n}=u_{1} \times r^{(n-1)}$ Recurrence relation $u_{n+1}=u_{n} \times r$
summing the first n terms of a sequence sigma notation : $\sum_{k=1}^{n} u_{k}=u_{1}+u_{2}+\cdots+u_{n}$ That means: "Sum up u_{k} where k goes from 1 to n." or: "Sum up all the terms u_{k} where k takes the values from 1 to n "	The sum of the first n terms of an arithmetic sequence is: $S_{n}=\sum_{k=1}^{n} u_{k}=\frac{n \times\left(u_{1}+u_{n}\right)}{2}$ particular case : $1+2+\cdots+n=\frac{n \times(n+1)}{2}$	The sum of the first n terms of a geometric sequence with common ratio r (with $r \neq 1$) is: $S_{n}=\sum_{k=1}^{n} u_{k}=u_{1} \times \frac{1-r^{n}}{1-r}$ particular case : $1+r+r^{2}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r}$

