QUADRATIC FUNCTIONS

VOCABULARY

$f(x)=a x^{2}+b x+c$ with a, b and c being real numbers, $a \neq 0$, is called a quadratic or a quadratic function.
$a x^{2}+b x+c=0$ with a, b and c being real numbers, $a \neq 0$, is called a quadratic equation.

The graph of a quadratic function is a parabola.
"Completing the square" is where we take an expression like this: $a x^{2}+b x+c$, and turn it into this: $a(x+d)^{2}+e$ or this: $a\left((x+d)^{2}+e\right)$.

BASIC PARABOLA

$y=x^{2}$
The graph is symmetrical about the y-axis.

The minimum value of y occurs at the origin. This point is called the vertex of the parabola.

The arms of the parabola continue indefinitely.

GENERAL CASE

$$
\begin{aligned}
f(x) & =a x^{2}+b x+c \\
& =a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right) \\
& =a\left(\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}\right) \quad \leftarrow \text { we complete the square } \\
& =a\left(\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}}\right)
\end{aligned}
$$

$$
\text { If } a>0
$$

If $\boldsymbol{a}<\mathbf{0}$

The curve opens up.
The curve opens down.

