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From the symmetry of this function there is no other way of expanding which will reduce the
number of elements. If the functions are substituted in the other order we get
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This completes the proof that these functions require the most elements.

To show that each requires (3-2"~' -2) elements, let the number of elements required be
denoted by s(n). Then from (19) we get the difference equation

s{n) =2s(n-1) +2,
with 5(2) = 4. This is linear, with constant coefficients, and may be solved by the usual
methods. The solution is
s(n) =327 — 2
as may easily be verified by substituting in the difference equation and boundary condition.
Note that the above only applies to a series-parallel realization. In a later section it will be
shown that the function .%_X,‘. and its negative may be realized with 4(n - 1) elements using a

more general type of circuit. The function requiring the most elements using any type of circuit
has not as yet been determined.

Dual Networks

The negative of any network may be found by De Morgan's theorem, but the network must
first be transformed into an equivalent series-parallel circuit (unless it is already of this type).
A theorem will be developed with which the negative of any planar two-terminal circuit may be
found directly. As a corollary a method of finding a constant-current circuit equivalent to a
given constant-voltage circuit and vice versa will be given.

Let N represent a planar network of hindrances, with the function X ., between the terminals
@ and b which are on the outer edge of the network. For definiteness consider the network of
Figure 15 (here the hindrances are shown merely as lines).

Now let M represent the dual of N as found by the following process; for each contour or
mesh of N assign a node or junction point of M. For each element of N, say X, separating the
contours » and s there corresponds an element X} connecting the nodes » and s of M. The area
exlerior to N is to be considered as two meshes, ¢ and d, corresponding to nodes ¢ and d of M.
Thus the dual of Figure 15 is the network of Figure 16.
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Figure 15 (left). Planar network for illustra- Figure 16 (right). Dual of figure 15
tion of duality theorem
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Theorem: If M and N bear this duality relationship, then X ,, = X,;. To prove this, let the
network M be superimposed upon N, the nodes of M within the corresponding meshes of N and
corresponding elements crossing. For the network of Figure 15, this is shown in Figure 17 with
N solid and M dotted. Incidentally, the easiest method of finding the dual of a network
(whether of this type or an impedance network) is to draw the required network superimposed
on the given network. Now, if X, = 0, then there must be some path from a to & along the
lines of N such that every element on this path equals zero. But this path represents a path
across M dividing the circuit from ¢ to d along which every element of M is one. Hence
X4 = 1. Similarly, if X, = 0,then X, = 1, and it follows that X ,, = X_,.
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Figure 17. Superposition of a network and
its dual Figure 18. MNonplanar network

It is evident from this theorem that a negative for any planar network may be realized with
the same number of elements as the given network.’

In a constant-voltage relay system all the relays are in parallel across the line. To open a
relay a series connection is opened. The general constant-voltage system is shown in
Figure 19. In a constant-current system the relays are all in series in the line. To de-operate a
relay it is short-circuited. The general constant-current eircuit corresponding to Figure 19 is
shown in Figure 20. If the relay Y of Figure 20 is to be operated whenever the relay X, of
Figure 19 is operated and not otherwise, then evidently the hindrance in parallel with ¥, which
short-circuits it must be the negative of the hindrance in series with X, which connects it across
the voltage source. If this is true for all the relays, we shall say that the constant-current and
constant-voltage systems are equivalent. The above theorem may be used to find equivalent
circuits of this sort, for if we make the networks N and M of Figures 19 and 20 duals in the
sense described, with X, and Y as corresponding elements, then the condition will be satisfied.
A simple example of this is shown in Figures 21 and 22.
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Figure 19 (left). General constant-voltage Figure 20 (right). G | constant. t
relay circult relay circuit

T 'This is nor in general true if the word **planar”* is omitted. The nonplanar netwark X, of Figure 18, for example,

has no negative containing only eight elements.
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Figure 21 (left). Simple constant-voltage Figure 22 (right). Constant-current system
system equivalent to figure 21

Synthesis of the General Symmetric Function

It has been shown that any function represents explicitly a series-parallel circuit. The
series-parallel realization may require more elements, however, than some other network
representing the same function. In this section a method will be given for finding a circuit
representing a certain type of function which in general is much more economical of elements
than the best series-parallel circuit. This type of function is known as a symmetric function and
appears frequently in relay circuits.

Definition: A function of the n variables X ,X,...X, is said to be symmetric in these
variables if any interchange of the variables leaves the function identically the same. Thus
XY + XZ + YZ is symmetric in the variables X, ¥, and Z. Since any permutation of variables
may be obtained by successive interchanges of two variables, a necessary and sufficient
condition that a function be symmetric is that any interchange of two variables leaves the
function unaltered.

By proper selection of the variables many apparently unsymmetric functions may be made
symmetric. For cxample, XY'Z + X"YZ + X'Y'Z" although not symmetric in X, ¥, and Z is
symmetric in X, ¥, and Z*. It is also sometimes possible to write an unsymmetric function as a
symmetric function multiplicd by a simple term or added 10 a simple term. In such a case the
symmetric part may be realized with the methods to be described, and the additional term
supplied as a series or parallel connection.

The following theorem forms the basis of the method of design which has been developed.

Theorem: A necessary and sufficient condition that a function be symmetric is that it may
be specified by stating a set of numbers @, , a;...a; such that if exactly a;(j = 1,2,3...)) of
the variables are zero, then the function is zero and not otherwise. This follows easily from the
definition. The set of numbers a, ¢;...a; may be any set of numbers selected from the
numbers O to n inclusive, where » is the number of variables in the symmetric function. For
convenience, they will be called the a-numbers of the function. The symmetric function
XY + XZ + YZ has the a-numbers 2 and 3, since the function is zero if just two of the variables
are zero or if three are zero, but not if none or if one is zero. To find the a-numbers of a given
symmetric function it is merely necessary to evaluate the function with 0,1...n of the variables
zero. Those numbers for which the result is zero are the a-numbers of the function.

Theorem: There are 2"*' symmetric functions of n variables. This follows from the fact
that there are n + | numbers, each of which may be taken or not in our selection of a-numbers.
Two of the functions are trivial, however, namely, those in which all and one of the numbers
are taken. These give the “*functions’” 0 and 1, respectively. The symmetric function of the n
variables X ,X,...X, with the a-numbers a,.a,...a; will be written S, ., .
(Xy,X,5,...,X,). Thus the example given would be S53(X,Y.Z). The circuit which has



488 C. E. Shanpon

been developed for realizing the general symmetric function is based on the a-numbers of rhe
function and we shall now assume that they are known.

Theorem: The sum of two given symmetric functions of the same set of variables is a
symmetric function of these variables having for g-numbers those numbers common to the two
given functions. Thus §23(X ... Xg)+8;35(X,...Xg) =823(X)...X4).

Theorem: The product of two given symmetric functions of the same set of variables is a
symmetric function of these variables with all the numbers appearing in either or both of the
given functions for a-numbers. Thus 8 5 3(X .. Xg) "S5 35X .. Xg) = 5y 335(X,..X4).

To prove these theorems, note that a product is zero if either factor is zero, while a sum is
zero only if both terms are zero.

Theorem: The negative of a symmetric function of n variables is a symmetric function of
these variables having for a-numbers all the numbers from 0 to 1 inclusive which are not in the
a-numbers of the given function. Thus 8535 (X|...X4) =S0.1.46(X ... Xg).
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Figure 23. Circuit for realizing S(X,, X, X.)

Before considering the synthesis of the general symmetric function §,, a
(X, X5,...,X,) asimple example will be given. Suppose the function S, (X, ,X,,X;) is 10
be realized. This means that we must construct a circuit which will be closed when any two of
the variables X | ,X,,X 5 are zero, but open if none, or one or three are zero. A circuit for this
purpose is shown in Figure 23. This circuit may be divided into three bays, onc for each
variable, and four levels marked 0, 1, 2 and 3 al the right. The terminal b is connected to the
levels corresponding 1o the a-numbers of the requited funcsion, in this case to the level marked
2. The line coming in at 4 first encounters a pair of hindrances X, and X}. If X| = 0, the line
is switched up to the level marked 1, meaning that one of the variables is zero; if not it stays at
the same level. Next we come to hindrances X5 and X5. i X, = 0, the line is switched up a
level; if not, it stays at the same level. X; has a similar effect. Finally reaching the right-hand
set of terminals, the line has been switched up to a level equal to the total number of variables
which are zero. Since terminal b is connected to the level marked 2, the circuit a — b will be
completed if and only if 2 of the variables are zero. If §o31(X;, X5, X3) had been desired,
terminal » would be connected to both levels 0 and 3. In Figure 23 certain of the elements are
evidently superfluous. The circuit may be simplified to the form of Figure 24,
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Figure 24. Simplification of figure 23

For the general function exactly the same method is followed. Using the general circuit for
n variables of Figure 25, the terminal b is connected to the levels corresponding to the a-
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Figure 25. Circuit for realizing the general
symmetric function Saya; . . . ax(X;, X3, ... X))

numbers of the desired symmetric function. In Figure 25 the hindrances are respected merely
by lines, and the letters are omitted from the circuit, but the hindrance of each line may easily

be seen by generalizing Figure 23. After terminal # is connected, all superfluous elements may
be deleted.

Xi Xz X3 X4 X5 Xs

Figure 26. Circuit for S 55(X; . . . X;) using
the “shifting down" process

In certain cases it is possible to greatly simplify the circuit by shifting the levels down.
Suppose the function S 3 4(X,...X¢) is desired. Instead of continuing the circuit up to the
sixth level, we connect the second level back down to the zero level as shown in Figure 26.
The zero level then also becomes the third level and the sixth level. With terminal b connected
to this level, we have realized the function with a great savings of elements. Eliminating
unnecessary elements the circuit of Figure 27 is obtained. This device is especially useful if the
a-numbers form an arithmetic progression, although it can sometimes be applied in other cases.

X Xz X3 Xg4 Xs Xg

Figure 27. Simplification of figure 26

n f
The functions ZX; and (ZX; )" which were shown to require the most elements for a series
1 |

parallel realization have very simple circuits when developed in this manner. It can be easily
"

shown that if n is even, then ZX is the symmetric function with all the even numbers for a-
!

n
numbers, if n is odd it has all the odd numbers for ¢-numbers. The function {%X‘.}’ is, of

course, just the opposite. Using the shifting-down process the circuits are as shown in
Figures 28 and 29, These circuits each require 4(»n —1) elements. They will be recognized as
the familiar circuit for controlling a light from n points, using (# —2) double-pole double-throw
switches and two single-pole double-throw switches. If at any one of the points the position of
the switch is changed, the total number of variables which equal zero is changed by one, so that
if the light is on, it will be turned off and if already off, it will be turned on.
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Figure 28. =X, forn edd; (2X.) forn
1 even L

More than one symmetric function of a certain set of variables may be realized with just one
circuit of the form of Figure 25, providing the different functions have no a-numbers in
common. If there are common a-numbers the levels may be shifted down, or an extra relay
may be added so that one circuit is still sufficient.

The general network of Figure 25 contains n(n + 1) elements. We will show that for any
given selection of a-numbers, at least n of the elements will be superfluous. Each number from
| to n —1 inclusive which is not in the set of a-numbers produces two unnecessary elements; 0
or n missing will produce one unnecessary element. However, if two of the a-numbers differ
by only one, then two elements will be superfluous, If more than two of the a-numbers are
adjacent, or if two or more adjacent numbers are missing, then more than one element apiece
will be superfluous, It is evident then that the worst case will be that in which the a-numbers
are all the odd numbers or all the even numbers from 0 to n. In each of these cases it is easily
seen that n of the elements will be superfluous. In these cases the shifting down process may be
used if n > 2 so that the maximum of n° elements will be needed only for the four particular
functions X, X*, X®Y, and (X®Y)".

”
Figure 29. (EX,) for n even; (ﬁ'xg’ forn
1 odd 1

Equations From Given Qperating Characteristics

In general, there is a certain set of independent variables A, B, C... which may be switches,
externally operated or protective relays. There is also a set of dependent variables v, y, -...
which represent relays, motors or other devices to be controlled by the circuit. It is required to
find a network which gives, for each possible combination of values of the independent
variables, the correct values for all the dependent variables. The following principles give the
general method of solution.

l.  Additional dependent variables must be introduced for each added phase of operation of a
sequential system. Thus if it is desired to construct a system which operates in three steps, two
additional variables must be introduced to represent the beginning of the last two steps. These
additional variables may represent contacts on a stepping switch or relays which lock in
sequentially. Similarly each required time delay will require a new variable, representing a
time delay relay of some sort. Other forms of relays which may be necessary will usually be
obvious from the nature of the problem.

2. The hindrance equations for each of the dependent variables should now be written down.
These functions may involve any of the variables, dependent or independent, including the
variable whose function is being determined (as, for example, in a lock-in circuit). The



