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all the relays X ,...X, the same. So far we have only considered transformations which may
be applied to a two-terminal network keeping the operation of one relay in series with this
network the same. To this end we define equivalence of n-terminal networks as follows.
Definition: Two n-terminal networks M and N will be said to be equivalent with respect to these
n terminals if and only if X, = ¥;; j.k = 1,2,3....n, where X is the hindrance of N
(considered as a two-terminal network) between terminals j and &, and Y jk is that for M between
the corresponding terminals. Under this definition the equivalences of the preceding sections
were with respect to two terminals.
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Figure 7. General constant-voltage relay
circuit

Star-Mesh and Delta-Wye Transformations

As in ordinary network theory there exist star-to-mesh and delta-to-wye transformations. In
impedance circuits these transformations, if they exist, are unique. In hindrance networks the
transformations always exist and are not unique. Those given here are the simplest in that they
require the least number of elements. The delta-to-wye transformation is shown in Figure 8.
These two networks are equivalent with respect to the three terminals a,b, and c, since by
distributive law X, = R(§ + T) = RS + RT and similarly for the other pairs of terminals
a—-cand b -c.
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Figure 8. Delta-wye transformation

The wye-to-delta transformation is shown in Figure 9. This follows from the fact that
Xap =R+85=(R+S8)(R+T+T+8§), etc. An n-point star also has a mesh equivalent
with the central junction point eliminated. This is formed exactly as in the simple three-point
star, by connecting each pair of terminals of the mesh through a hindrance which is the sum of
the corresponding arms of the star. This may be proved by mathematical induction. We have
shown it to be true for n = 3. Now assuming it true for n — 1, we shall prove it for n.
Suppose we construct a mesh circuit from the given n-point star according to this method.
Each corner of the mesh will be an (n — 1)-point star and since we have assumed the theorem
true for n — 1 we may replace the nth comner by its mesh equivalent. If ¥, was the hindrance
of the original star from the central node 0 to the point j, then the reduced mesh will have the
hindrance (Yo, + Y, )" (Yos + Y,, + ¥y, + Yg,) connecting nodes r and s. But this reduces
to Y, Yy, which is the correct value, since the original n-point star with the nth arm deleted
becomes an (n — 1)-point star and by our assumption may be replaced by a mesh having this
hindrance connecting nodes r and s. Therefore the two networks are equivalent with respect to
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the first n — | terminals. By eliminating other nodes than the nth, or by symmetry, the
equivalence with respect to all » terminals is demonstrated.
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Figure 9. Wye-delta transformation

Hindrance Function of a Non-Series-Parallel Network

The methods of Part II were not sufficient to handle circuits which contained connections
other than those of a series-parallel type. The ‘‘bridge’” of Figure 10, for example, is a non-
series-parallel network. These networks will be treated by first reducing to an equivalent
series-parallel circuit. Three methods have been developed for finding the equivalent of a
network such as the bridge.

Figure 10. Non-series-parallel circuit

The first is the obvious method of applying the transformations until the network is of the
series-parallel type and then writing the hindrance function by inspection. This process is
exactly the same as is used in simplifying the complex impedance networks. To apply this to
the circuit of Figure 10, first we may eliminate the node ¢, by applying the star-to-mesh
transformation to the star a—c, b—c¢, d—c. This gives the network of Figure 11. The
hindrance function may be written down from inspection for this network:

Xap = (R+8IURA+T)+W(T+9)] .

This may be written as

Xgp =RU+ SV + RTV + STU = R(U+TV) +S(V+TU) .
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Figure 11. Hindrance function by means of
transformations

The second method of analysis is to draw all possible paths through the network between the
points under consideration. These paths are drawn along the lines representing the component
hindrance elements of the circuit. If any one of these paths has zero hindrance, the required
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function must be zero. Hence if the result is written as a product, the hindrance of each path
will be a factor of this product. The required result may therefore be written as the product of
the hindrances of all possible paths between the two points. Paths which touch the same point
more than once need not be considered. In Figure 12 this method is applied to the bridge. The
paths are shown dotted. The function is therefore given by

Xpp =(R+SWU+ VR +T+VWU+T+8)
=RU+ SV +RTV + UTS = R(U + TV) + S(V + TU) .

The same result is thus obtained as with the first method.

Figure 12. Hindrance function as a product
of sums

The third method is to draw all possible lines which would break the circuit between the
points under consideration, making the lines go through the hindrances of the circuit. The
result is written as a sum, each term corresponding to a certain line. These terms are the
products of all the hindrances on the line. The justification of the method is similar to that for
the second method. This method is applied to the bridge in Figure 13.

Figure 13. Hindrance function as a sum of
products

This again gives for the hindrance of the network:

Xan = RU+ SV +RTV + STU = R(U+TV) + S(V +TU) .

The third method is usually the most convenient and rapid, for it gives the result directly as
a sum. It seems much easier to handle sums than products due, no doubt, to the fact that in
ordinary algebra we have the distributive law X(¥ + Z) = XY + XZ, but not its dual
X+YZ=(X+Y)X+ Z). It is, however, sometimes difficult to apply the third method to
nonplanar networks (networks which cannot be drawn on a plane without crossing lines) and in
this case one of the other two methods may be used.

Simultaneous Equations

In analyzing a given circuil it is convenient to divide the various variables into two classes.
Hindrance elements which are directly controlled by a source external to the circuit under
consideration will be called independent variables. These will include hand-operated swilches,
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contacts on external relays, etc. Relays and other devices controlled by the network will be
called dependent variables. We shall, in general, use the earlier letters of the alphabet to
represent independent variables and the later letters for dependent variables. In Figure 7 the
dependent variables are X |, X,... X,. X, will evidently be operated if and only if X, = 0,
where X (; is the hindrance function of N between terminals 0 and k. That is,

X.k = Xm. L k=12....n.

This is a system of equations which completely define the operation of the system. The right-
hand members will be known functions involving the various dependent and independent
variables and given the starting conditions and the values of the independent variables the
dependent variables may be computed.

A transformation will now be described for reducing the number of elements required to
realize a set of simultaneous equations. This transformation keeps X o, (k = 1,2...n) invariant,
but X (j,& = 1.2...n) may be changed, so that the new network may not be equivalent in the
strict sense defined to the old one. The operation of all the relays will be the same, however,
This simplification is only applicable if the X o, functions are written as sums and certain terms
are comman to two or more equations. For example, suppose the sel of equations is as follows:

W=A+B+CW,
X=A+08+ WX,
Y=A+CY,
Z=FEZ+F.
This may be realized with the circuit of Figure 14, using only one A clement for the three
places where A occurs and only one B element for its two appearances. The justification is

quite obvious. This may be indicated symbolically by drawing a vertical line after the terms
common to the various equations, as shown below.

W= B + cw
¥ = A+ WX
Y = cYy
& = F + EZ
C: w
w
B
W: x
A X
CS Y
Y
E Zz
O —b
z:—a?

Figure 14. Example of reduction of simul-
taneous equations
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It follows from the principle of duality that if we had defined multiplication to represent
series connection, and addition for parallel connection, exactly the same theorems of
manipulation would be obtained. There were two reasons for choosing the definitions given.
First, as has been mentioned, it is easier to manipulate sums than products and the
transformation just described can only be applied to sums (for constant-current relay circuits
this condition is exactly reversed), and second, this choice makes the hindrance functions
closely analogous to impedances. Under the alternative definitions they would be more similar
to admittances, which are less commonly used,

Sometimes the relation XY’ = 0 obtains between two relays X and Y. This is true if ¥ can
operate only if X is operated. This frequently occurs in what is known as a sequential system.
In a circuit of this type the relays can only operate in a certain order or sequence, the operation
of one relay in general *‘preparing’’ the circuit so that the next in order can operate, If X
precedes Y in the sequence and both are constrained to remain operated until the sequence is
finished then this condition will be fulfilled. - In such a case the following equations hold and
may sometimes be used for simplification of expressions. If XY’ = 0, then

Xy =y,
XY =X,
X"+Y=1,
X'+ =%,
X+¥Y=Y,

These may be proved by adding XY = 0 to the left-hand member or multiplying it by
X’ 4 Y = 1, thus not changing the value. For example, to prove the first one, add XY’ to
XY’ and factor,

Special Types of Relays and Switches

In certain types of circuils it is necessary to preserve a definite sequential relation in the
operation of the contacts of a relay. This is done with make-before-break (or continuity) and
break-make (or transfer) contacts. In handling this type of circuit the simplest method seems to
be to assume in setting up the equations that the make and break contacts operate
simultaneously, and after all simplifications of the equations have been made and the resulting
circuit drawn, the required type of contact sequence is found from inspection,

Relays having a time delay in operating or deoperating may be treated similarly or by
shifting the time axis. Thus if a relay coil is connected to a battery through a hindrance X, and
the relay has a delay of p seconds in operating and releasing, then the hindrance function of the
contacts of the relay will also be X, but at a time p seconds later. This may be indicated by
writing X(r) for the hindrance in series with the relay, and X(r — p) for that of the relay
contacts.

There are many special types of relays and switches for particular purposes, such as the
stepping switches and selector switches of various sorts, multiwinding relays, cross-bar
switches, etc. The operation of all these types may be described with the words *‘or,”” “*and,”’
“if,"" *‘operated,”’ and ‘*‘not operated.'’ This is a sufficient condition that they may be
described in terms of hindrance functions with the operations of addition, multiplication,
negation, and equality. Thus a two-winding relay might be so constructed that it is operated if
the first or the second winding is operated (activated) and the first and the second windings are
not operated. If the first winding is X and the second Y, the hindrance function of make
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contacts on the relay will then be XY + X"Y’. Usually, however, these special relays occur
only at the end of a complex circuit and may be omitted entirely from the calculations to be
added after the rest of the circuit is designed.

Sometimes a relay X is to operate when a circuit R closes and to remain closed independent
of R until a circuit S opens. Such a circuit is known as a lock-in circuit. Its equation is:

X=RX+S.
Replacing X by X gives:
X' =RX"+S
Or
X =(R"+X)§ .

In this case X is opened when R closes and remains open until S opens.

IV. Synthesis of Networks
Some General Theorems on Networks and Functions

It has been shown that any function may be expanded in a series consisting of a sum of
products. each product being of the form X X,...X, with some permutation of primes on the
letters, and each product having the coefficient 0 or 1. Now since each of the n variables may
or may not have a prime, there is a total of 2" different products of this form. Similarly each
product may have the coefficient 0 or the coefficient | so there are 22" possible sums of this

- - - . . f
sort. Hence we have the theorem: The number of functions obtainable from n variables is 22" .

Each of these sums will represent a different function, but some of the functions may
aclually involve fewer than n variables (that is, they are of such a form thar for one or more of
the n variables, say X. we have identically f|y, .o = f|y, = so that under no conditions does
the value of the function depend on the value X ). Thus for two variables, X and Y, among the
16 functions obtained will be X, ¥, X" .¥" 0, and 1 which do not involve both X and ¥. To find
the number of functions which actually involve all of the n variables we proceed as follows.
Let ¢(n) be the number. Then by the theorem just given:

2¥ = 2 [ﬂq:rk,).

A=l

where [EJ = nl/k!(n — k)! is the number of combinations of # things taken 4 at a time. That

is, the total number of functions obtainable from n variables is equal to the sum of the numbers
of those functions obtainable from each possible selection of variables from these n which
acrually involve all the variables in the selection. Solving for ¢(n) gives

n—|

o(n) = 22" _ ‘E-U [;:] o(k) .

By substituting for ¢(n — 1) on the right the similar expression found by replacing n by n — 1
in this equation, then similarly substituting for ¢(n — 2) in the expression thus obtained, etc.,
an equation may be obtained involving only ¢(n). This equation may then be simplified to the
form

o(n) = é;, [1{]2:*(_”"_* _
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As n increases this expression approaches its leading term 2* asymptotically. The error in
using only this term for n = 5 is less than 0.01 percent.

We shall now determine those functions of n variables which require the most relay
contacts to realize, and find the number of contacts required. In order to do this, it is necessary
to define a function of two variables known as the sum modulo two or disjunct of the variables.
This function is written X | @X , and is defined by the equation:

X|®X:} = Xle_! +Xr’1X3 .

It is easy to show that the sum modulo two obeys the commutative, associative, and the
distributive law with respect to multiplication, that is,

X|®X2 = X:@Xl ”
(X|®X:}@X3 = Xle(x_\;@X}} .
X|(X2®X3) = X|X:®X|X3 .

Also
(X19X,) = X,8X5 = X|®X, ,
X, 80 = X, .
X8l =X].

Since the sum modulo two obeys the associative law, we may omit parentheses in a sum of
several terms without ambiguity. The sum module two of the n varlab]es X, . X-...X, will for
convenience be written:

nfr=

X1®X2€3X3...®X” = L

Xk

Theorem:" The two functions of n variables which require the most elements (relay
n n
contacts) in a series-parallel realization are ZX, and (ZX,;)", each of which requires
1 I
(3:2"7' —2) clements.

This will be proved by mathematical induction. First note that it is true for n = 2. There
are ten functions involving two variables, namely, XY, X + ¥, XY, X" + Y, XY', X + YV’,
XY, X +Y ., XY+ XY, XY+ XY, All of these but the last two require two elements:
the last two require four elements and are X@Y and (X@®Y)’, respectively. Thus the theorem is
true for n = 2. Now assuming it true for n = 1, we shall prove it true for n and thus complete
the induction. Any function of n variables may be expanded about the nth variable as follows:

AX Xy X)) ==X, /(X X2 1) + X f(X X, 20,0) (19)

Now the terms f(X;..X,_,1) and f(X,...X,_,,0) are functions of n — 1 variables and if
they individually require the most elements for n — 1 variables, then f will require the most
elements for n variables, providing there is no other method of writing f so that fewer elements

are required. We have assumed that the most elements for n — 1 variables are n.qum,d by
n=1

E X and its negative. If we, therefore, substitute for f(X,;...X,_,.1) the function = = X, and
I
n—1

for f(X,...X,_,0) the function ( % X)) we find

* See the Notes 1o this paper.



