A Symbolic Analysis of Relay
and Switching Circuits®
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1. Introduction

In the control and protective circuits of complex electrical systems it is frequently necessary
to make intricate interconnections of relay contacts and switches. Examples of these circuits
occur in automatic telephone exchanges, industrial motor-control equipment, and in almost any
circuits designed to perform complex operations automatically. In this paper a mathematical
analysis of certain of the properties of such networks will be made. Particular attention will be
given to the problem of network synthesis. Given certain characteristics, it is required to find a
circuit incorporating these characteristics. The solution of this type of problem is not unique
and methods of finding those particular circuits requiring the least number of relay contacts and
switch blades will be studied. Methods will also be described for finding any number of
circuits equivalent to a given circuit in all operating characteristics. It will be shown that
several of the well-known theorems on impedance networks have roughly analogous theorems
in relay circuits. Notable among these are the delta-wye and star-mesh transformations, and the
duality theorem.

The method of attack on these problems may be described briefly as follows: any circuit is
represented by a set of equations, the terms of the equations corresponding to the various relays
and swilches in the circuit. A calculus is developed for manipulating these equations by simple
mathematical processes, most of which are similar to ordinary algebraic algorisms. This
calculus is shown to be exactly analogous to the calculus of propositions used in the symbolic
study of logic. For the synthesis problem the desired characteristics are first written as a system
of equations, and the equations are then manipulated into the form representing the simplest
circuit. The circuit may then be immediately drawn from the equations. By this method it is
always possible to find the simplest circuit containing only series and parallel connections, and
in some cases the simplest circuit containing any type of connection.

Qur notation is taken chiefly from symbolic logic. Of the many systems in common use we
have chosen the one which seems simplest and most suggestive for our interpretation. Some of
our phraseology, such as node, mesh, delta, wye, etc., is borrowed from ordinary network
theory for simple concepts in switching circuits.
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I1. Series-Parallel Two-Terminal Circuits
Fundamental Definitions and Postulates

We shall limit our treatment of circuits containing only relay contacts and switches, and
therefore at any given time the circuit between any two terminals must be either open (infinite
impedance) or closed (zero impedance). Let us associate a symbol X, or more simply X, with
the terminals @ and b. This variable, a function of time, will be called the hindrance of the
two-terminal circuit @ =b. The symbol O (zero) will be used to represent the hindrance of a
closed circuit, and the symbol 1 (unity) to represent the hindrance of an open circuit. Thus
when the circuit @ — b is open X, = | and when closed X, = 0. Two hindrances X ,, and
X . will be said to be equal if whenever the circuit @ — b is open, the circuit ¢ —d is open, and
whenever a — b is closed, ¢ —d is closed. Now let the symbol + (plus) be defined to mean the
series connection of the two-terminal circuits whose hindrances are added together. Thus
X + X4 is the hindrance of the circuit @ —d when b and ¢ are connected together. Similarly
the product of two hindrances X, ' X 4 or more briefly X, X .4 will be defined to mean the
hindrance of the circuit formed by connecting the circuits @ —b and ¢ —d in parallel. A relay
contact or switch will be represented in a circuit by the symbol in Figure 1, the letter being the
corresponding hindrance function. Figure 2 shows the interpretation of the plus sign and
Figure 3 the multiplication sign. This choice of symbols makes the manipulation of hindrances
very similar to ordinary numerical algebra.

Xab X Y X+Y
d ——0 Oo=—ph —_—0 0= Qe = e O
Figure 1 (left). Symbol for hindrance Figure 2 (right). Interpretation of addition
function
X
XY
—{ = —0 o—
¥
Figure 3 (middle). Interpretation of multipli-
cation

Itis evident that with the above definitions the following postulates will hold:

Postulates
l.a. 0:0=0 A closed circuit in parallel with a closed circuit is a
closed circuit.
b. 1+1=1 An open circuit in series with an open circuit is an

open circuit.
An open circuit in series with a closed circuit in either
order (i.e,, whether the open circuit is to the right or left
of the closed circuit) is an open circuit.

b. 01=10=0 A closed circuit in parallel with an open circuit in either

order is a closed circuit.

da 0+0=0 A closed circuit in series with a closed circuit is a closed
circuit.
An open circuit in parallel with an open circuit is an open
circuil.
4. Atany given time either X = QorX = 1.
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These are sufficient to develop all the theorems which will be used in connection with
circuits containing only series and parallel connections. The postulates are arranged in pairs to
emphasize a duality relationship between the operations of addition and multiplication and the
quantities zero and one. Thus if in any of the a postulates the zero’s are replaced by one’s and
the multiplications by additions and vice versa, the corresponding b postulate will result. This
fact is of great importance. It gives each theorem a dual theorem, it being necessary to prove
only one to establish both. The only one of these postulates which differs from ordinary
algebra is 1b. However, this enables great simplifications in the manipulation of these
symbols.

Theorems

In this section a number of theorems governing the combination of hindrances will be
given. Inasmuch as any of the theorems may be proved by a very simple process, the proofs
will not be given except for an illustrative example. The method of proof is that of *‘perfect
induction,’” i.e., the verification of the theorem for all possible cases. Since by Postulate 4 each
variable is limited to the values 0 and 1, this is a simple matter. Some of the theorems may be
proved more elegantly by recourse to previous theorems, but the method of perfect induction is
s0 universal that it is probably to be preferred.

X+Y=Y+X, (la)
XY =YX, (1b)
X+ (Y+2DH) =X+Y)+2Z, (2a)
X(Yz) = (XY)Z, (2b)
X(Y+2) = XY+ XZ, (3a)
X+YZ=(X+Y)X+2Z), (3b)
1'X =X, (4a)
0+X =X, (4b)
I+X =1, (5a)
0-X=0. (5b)

For example, to prove Theorem 4a, note that X is either 0 or 1. If it is 0, the theorem
follows from Postulate 25b; if 1, it follows from Postulate 35. Theorem 4b now follows by the
duality principle, replacing the 1 by 0 and the - by +.

Due to the associative laws (2a and 2b) parentheses may be omitted in a sum or product of
several terms without ambiguity. The Z and T1 symbols will be used as in ordinary algebra.

The distributive law (3a) makes it possible to “‘multiply out”* products and to factor sums.
The dual of this theorem, (3b), however, is not true in numerical algebra.

We shall now define a new operation to be called negation. The negative of a hindrance X
will be written X” and is defined to be a variable which is equal to 1 when X equals 0 and equal
to 0 when X equals 1. If X is the hindrance of the make contacts of a relay, then X’ is the
hindrance of the break contacts of the same relay. The definition of the negative of a hindrance
gives the following theorems:

X+X =1, (6a)



474 C. E. Shannon

XX’ =0, (6b)
=1, (7a)
¥ =@, (7b)
X' =X (8)

Analogue With the Calculus of Propositions

We are now in a position to demonstrate the equivalence of this calculus with certain
elementary parts of the calculus of propositions. The algebra of logic' 3, originated by George
Boole, is a symbolic method of investigating logical relationships. The symbols of Boolean
algebra admit of two logical interpretations. If interpreted in terms of classes, the variables are
not limited to the two possible values 0 and 1. This interpretation is known as the algebra of
classes. If, however, the terms are taken to represent propositions, we have the calculus of
propositions in which variables are limited to the values 0 and 1,* as are the hindrance
functions above. Usually the two subjects are developed simultaneously from the same set of
postulates, except for the addition in the case of the calculus of propositions of a postulate
equivalent to Postulate 4 above. E. V. Huntington* gives the following set of postulates for
symbolic logic:

1. The class K contains at least two distinct elements.

2 If @ and b are in the class K then @ + b is in the class K.
3. a+b=b+a

4. (@a+b)+c=a+ (b+0)

3. a+a=a.

6. ab+ab’ = awhereabisdefinedas(a’ + b")" .

If we let the class K be the class consisting of the two elements 0 and 1, then these postulates
follow from those given in the first section. Also Postulates 1, 2, and 3 given there can be
deduced from Huntington's postulates. Adding 4 and restricting our discussion to the calculus
of propositions, it is evident that a perfect analogy exists between the calculus for switching
circuits and this branch of symbolic logic.”™ The two interpretations of the symbols are shown
in Table I.

Due to this analogy any theorem of the calculus of propositions is also a true theorem if
interpreted in terms of relay circuits. The remaining theorems in this section are taken directly
from this field.

De Morgan’s theorem:
X+Y+Z.)Y =Xx"Y-Z.., (9a)
(XYZ.) =X ¥V +Z+... . (9b)

This refers only to the classical theory of the calculus of propositions. Recently some work has been done with
logical systems in which propositions may have more than two *‘truth values.”

** This analogy may also be seen from a slightly different viewpoint. Instead of associating X, directly with the
circuit @ —b let X, represent the proposition that the circuit a —b is open. Then all the symbols are directly
interpreted as propositions and the operations of addition and multiplication will be seen to represent series and
parallel connections.
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This theorem gives the negative of a sum or product in terms of the negatives of the summands
or factors. It may be easily verified for two terms by substituting all possible values and then
extended to any number n of variables by mathematical induction.

A function of certain variables X |, X,.....X, is any expression formed from the variables
with the operations of addition, multiplication, and negation. The notation f(X,.,X,,...... X))
will be used to represent a function. Thus we might have f(X,Y,Z) = XY + X’ (Y’ + Z’). In
infinitesimal calculus it is shown that any function (providing it is continuous and all
derivatives are continuous) may be expanded in a Taylor series. A somewhat similar expansion
is possible in the calculus of propositions. To develop the series expansion of functions first

note the following equations:

F(X1.X3,..X,) = X;of(1,%5..X,) + X7-£(0,X,..X,) , (10a)

S o von ) = [F0X5...X,) + Xy <[ FOLX,.. X ) # X1 . (10b)

These reduce to identities if we let X, equal either 0 or 1. In these equations the function f is
said to be expanded about X ;. The coefficients of X | and X] in 10a are functions of the (n - 1)
variables X, ...X, and may thus be expanded about any of these variables in the same manner.
The additive terms in 10b also may be expanded in this manner. Expanding about X, we have:

FX X)) = X Xof(1,1,X5..X,) + X, X1 £(1,0,X5...X,,) +
X1X2f(0,1,X5..X,) + X\ X5£(0,0,X5..X,) (11a)

fX1.X,) = [X) + X2+ f(0,0,X5.. X )] [X, + X5 + £(0,1,X5..X,)]
(X7 + X, + £(1,0,X5.. X,)]'[X) + X5 + f(1,1,X5..X,)] . (11b)

Continuing this process n times we will arrive at the complete series expansion having the
form:

XX, = f(L,L1LL.D)X XX, + f(0,1,1.. )X X5, X, +++ (12a)
+ £(0,0,0...0) X X5..X,, .

fXy..X,) = [X, + X5 +X,, + £(0,0,0...0)] ... (12b)
(X7 + X5+ X+ (L1 D)) .

Table I. Analogue Between the Calculus of Propositions and the Symbolic Relay Analysis

Symbol Interpretation in Relay Circuits Interpretation in the Calculus of Propositions

X The circuit X The proposition X

0 The circuit is closed The proposition is false

1 The circuit is open The proposition is true

X+Y The series connection of circuits X and ¥ The proposition which is true if either X or ¥
is true

XY The parallel connection of circuits X and ¥  The proposition which is true if both X and ¥
are true

X’ The circuit which is open when X is closed  The contradictory of proposition X

and closed when X is open
= The circuits open and close simultaneously ~ Each proposition implies the other
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By 12a, f is equal to the sum of the products formed by permuting primes on the terms of
X X,...X, in all possible ways and giving each product a coefficient equal to the value of the
function when that product is 1. Similarly for 12b.

As an application of the series expansion it should be noted that if we wish to find a circuit
representing any given function we can always expand the function by either 10a or 10b in such
a way that any given variable appears at most twice, once as a make contact and once as a break
contact. This is shown in Figure 4. Similarly by 11 any other variable need appear no more
than four times (two make and two break contacts), etc.

X £(0,X2:-Xn) xi  F(0,X20xn)
it Nt
f(l,xz'-xn) Ki X;OT(EXE"Xn)

Figure 4. Expansion about one variable

A generalization of De Morgan’s theorem is represented symbolically in the following
equation:

X, X2 X,,+.) = fXXS . X0 +) . (13)
By this we mean that the negative of any function may be obtained by replacing each variable
by its negative and interchanging the + and * symbols. Explicit and implicit parentheses will, of
course, remain in the same places. For example, the negative of X + Y-(Z + WX’) will be
XY +zw + X))l

Some other theorems useful in simplifying expressions are given below:

X=X+X=X+X+X=etc., (14a)
X=XX=XXX=etc., (14b)
X+XY =X, (15a)
XX+Y) +X, (15b)
XY+X'Z=XY+X'Z+7YZ, (16a)
X+VX' +2)=X+V)X +Z)(Y+2), (16b)
Xf(x,Y.z,...) = Xf(1,Y.Z,...) , (17a)
X+ f(X,Y.Z,.) =X+ f0,Y,Z,.), (17b)
X' f(X,Y,Z,..)=Xf0YZ.), (18a)
X'+ fX,Y.Z,..) =X’ + f(1,Y,Z,...) . (18b)

All of these theorems may be proved by the method of perfect induction.

Any expression formed with the operations of addition, multiplication, and negation
represents explicitly a circuit containing only series and parallel connections. Such a circuit
will be called a series-parallel circuit. Each letter in an expression of this sort represents a
make or break relay contact, or a switch blade and contact. To find the circuit requiring the
least number of contacts, it is therefore necessary to manipulate the expression into the form in
which the least number of letters appear. The theorems given above are always sufficient to do
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this. A little practice in the manipulation of these symbols is all that is required. Fortunately
most of the theorems are exactly the same as those of numerical algebra — the associative,
commutative, and distributive laws of algebra hold here. The writer has found Theorems 3, 6,
9,14, 15, 16a, 17, and 18 to be especially useful in the simplification of complex expressions.

Frequently a function may be written in several ways, each requiring the same minimum
number of elements. In such a case the choice of circuit may be made arbitrarily from among
these, or from other considerations.

a—o O—{ ’ r b
Xo oZ l

Figure 5. Circuit to be simplified
As an example of the simplification of expressions consider the circuit shown in Figure 5.
The hindrance function X ,;, for this circuit will be:
Xap =W+WX+Y)+X+Z2)S+W +Z20Z +Y+S5'V)
WH+X+Y+X+ZNS+1+2)Z +Y+5'V)
W+X+Y+Z(Z +S'V) .

These reductions were made with 17b using first W, then X and Y as the ‘X"’ of 17b. Now
multiplying out;

Xop =W+X+Y+2Z +2ZS'V
=W+ X+Y+2Z5'V.

The circuit corresponding to this expression is shown in Figure 6. Note the large reduction
in the number of elements.

z

[
a QWC X oY o v b

Figure 6. Simplification of figure 5

It is convenient in drawing circuits to label a relay with the same letter as the hindrance of
make contacts of the relay. Thus if a relay is connected to a source of voltage through a
network whose hindrance function is X, the relay and any make contacts on it would be labeled
X. Break contacts would be labeled X’. This assumes that the relay operates instantly and that
the make contacts close and the break contacts open simultaneously. Cases in which there is a
time delay will be treated later.

ITI. Multi-Terminal and Non-Series-Parallel Circuits

Equivalence of n-Terminal Networks

The usual relay control circuit will take the form of Figure 7, where X |, X»,... X, are relays
or other devices controlled by the circuit and N is a network of relay contacts and switches. It
is desirable to find transformations that may be applied to N which will keep the operation of



