
I. Patron

compétences visées :
Tracer le patron d'un solide (parallélépipède rectangle)
Utiliser le vocabulaire de géométrie

Le patron ci-dessous est celui d'un parallélépipède rectangle. Le but de cette activité est de reproduire ce patron en vraie grandeur sur une feuille cartonnée afin de construire le parallélépipède en trois dimensions.

Complète le programme de construction en réalisant les étapes au fur et à mesure sur ta feuille cartonnée :

- Trace un segment [CG] tel que CG = _ _ _
- Place les points D,E et F tels que les segments [CD], [CE] et [CF] mesurent respectivement _ _ et
- Trace la _____ à (CG) passant par D. Place le point A sur cette droite tel que DC = DA (utilise ton compas !)
- Trace la _____ à (DA) passant par A et la _____ à (DE) passant par E : appelle B leur point _____
- Construis les points I et J tels que DEJI soit un _____ , et tels que EJ = ___ = 3 cm
- Trace la _____ (IJ) et construis les points H, K, L, M et N tels que CDIH, EFKJ, FGLK et IJNM soient des ____ et que JN = JK (utilise ton compas !)

Découpe ton patron et construis ton parallélépipède rectangle.

II. Aire totale

compétences visées :
Calculer une aire
Utiliser les bonnes unités

1. Sur un bout de papier cartonné, construis un carré de 1 cm de côté (on l'appelle le carré unité).

2. À l'aide de ton carrée unité, détermine l'aire de chaque rectangle du patron précédent : - Je peux placer exactement fois mon carré unité dans le rectangle R ₁ donc l'aire du rectangle R ₁
est
- Je peux placer exactement fois mon carré unité dans le rectangle R2 donc l'aire du rectangle R2
est
- Je peux placer exactement fois mon carré unité dans le rectangle R3 donc l'aire du rectangle R3
est
- Je peux placer exactement fois mon carré unité dans le rectangle R4 donc l'aire du rectangle R4
est
- Je peux placer exactement fois mon carré unité dans le rectangle R5 donc l'aire du rectangle R5
est
- Je peux placer exactement fois mon carré unité dans le rectangle R ₆ donc l'aire du rectangle R ₆
est
3. Quelle formule utilisant la longueur L et la largeur l d'un rectangle donne l'aire de ce rectangle ?
4. Dans le patron, quels sont les rectangles superposables ? Quelles sont leurs aires ? - R ₁ et sont superposables donc leur aire est A ₁ = et sont superposables donc leur aire est A ₂ =
et sont superposables donc leur aire est A ₃ =
(on appelle L la longueur AB, l la longueur DI et h la longueur AD)

- 5. Quelle formule donne alors l'aire totale du patron ?
- 6. Remplis la première ligne du tableau suivant et complète les deux autres lignes correspondant à deux autres patrons de parallélépipèdes rectangles :

	L	1	h	$A_1 =$	$A_2 =$	$A_3 =$	Aire totale A =
patron 1							
patron 2	10 cm	6 cm	4 cm				
patron 3	15 cm	9 cm	6 cm				

III. Proportionnalité?

compétences visées :			
Reconnaître un tableau de proportionnalité ou non			
Calculer la puissance d'un nombre			
Effet d'un agrandissement ou d'une réduction sur les aires			

1. Considérons juste la partie du grand tableau donnant les longueurs :

L	1	h	
		[
10 cm	6 cm	4 cm -	
15 cm	9 cm	6 cm	

Comment passe-t-on de la première à la deuxième ligne ? Comment passe-t-on de la première à la dernière ligne Ce tableau est-il un tableau de proportionnalité ou pas ?

2. Considérons juste la partie du grand tableau donnant les aires des rectangles :

$A_1 =$	$A_2 =$	$A_3 =$	Aire totale A =	

Comment passe-t-on de la première à la deuxième ligne ? Comment passe-t-on de la première à la dernière ligne ? Que peut-on dire de ce tableau ?

Le grand tableau est-il un tableau de proportionnalité ?

3. Complète le texte :	
« Si pour passer d'un patron à un autre on multiplie les longueurs par	, alors on multiplie les aires
par »	
« Si pour passer d'un patron à un autre on multiplie les longueurs par	, alors on multiplie les aires
par »	

On peut donc généraliser :

« Si pour passer d'un patron à un autre on multiplie les longueurs par k, alors on multiplie les aires par ___»

Application:

Si pour passer d'un patron à un autre...

- on multiplie les longueurs par 10 alors on multiplie les aires par _ _ _
- on multiplie les longueurs par 0,5 alors on multiplie les aires par _ _ _
- on multiplie les longueurs par 4 alors on multiplie les aires par _ _ _
- on multiplie les longueurs par 7 alors on multiplie les aires par _ _ _
- on multiplie les longueurs par 0,1 alors on multiplie les aires par _ _ _

Remarque:	Multiplier les longueurs par 0,5 revient à les diviser par
	Multiplier les longueurs par 0,1 revient à les diviser par

Ces 2 transformations sont des réductions

IV. Cube unité

compétences visées :				
Calculer un volume				
Tracer le patron d'un solide (cube)				
Calcul de puissance d'un nombre				
Utiliser les bonnes unités				
Résolution d'équations				
Reconnaître un tableau de proportionnalité ou non				

1. En utilisant le programme de construction du parallélépipède rectangle, construis dans le papier cartonné un cube unité (chaque arête mesure 1 cm).

2. À l'aide de ton cube unité, détermine le volume de ton parallélépipède rectangle :
« Je peux placer exactement fois mon cube unité dans le parallélépipède rectangle donc son
volume est »
Quelle formule utilisant la longueur L, la largeur l et la hauteur h d'un parallélépipède rectangle donne
le volume de ce parallélépipède rectangle ?

Complète alors le tableau :

	L	1	h	V =
Parallélépipède 1	5 cm	3 cm	2 cm	
Parallélépipède 2	10 cm	6 cm	4 cm	
Parallélépipède 3	15 cm	9 cm	6 cm	

Ce tableau est-il un tableau de proportionnalité ?

3	Comi	nlète	1es	phrases	•
J.	COIII		103	pinases	٠

« Si pour passer	l'un parallélépipède à un autre or	n multiplie les longueurs par _	, alors on multiplie
les volumes par _	»		

« Si pour passer d'un parallélépipède à un autre on multiplie les longueurs par _ _ _ , alors on multiplie les volumes par _ _ _ »

On peut donc généraliser :

« Si pour passer d'un parallélépipède à un autre on multiplie les longueurs par k, alors on multiplie les volumes par _ _ _ »

Application:

Si pour passer d'un parallélépipède à un autre on multiplie les longueurs par...

- 10 alors on multiplie les volumes par _ _ _
- 0,5 alors on multiplie les volumes par _ _ _
- 4 alors on multiplie les volumes par _ _ _
- 7 alors on multiplie les volumes par _ _ _
- 0,1 alors on multiplie les volumes par _ _ _

4. Résolution d'équation

Dans ce tableau, on connaît les volumes mais il manque à chaque fois une des longueurs... Retrouve ces longueurs en notant à chaque fois le calcul que tu as fait :

	L	1	h	V =
Parallélépipède 4	5 cm		8 cm	$160 \mathrm{cm}^3$
Parallélépipède 5	2,5 m	0,5 m		$3,75 \text{ m}^3$
Parallélépipède 6		6 dm	70 cm	504 dm ³