
Defensive
Finite State Finite State
Automata

POWER ATTACKS

• Seattle, 1999.

• US and French delegates negotiate under which
conditions beef could be imported to France.

• «The Sun » sends a journalist to investigate:

??

Measure the circuit's processing time and current
consumption to infer what happens inside it.

SIDE CHANNEL ATTACKS

input output

� �

-
+

Logistics vs. Strategy

- How to get countermeasures?
Logistics

- Where to use these countermeasures?- Where to use these countermeasures?
Strategy

Here we address strategy.

The Subleq Machine

Subleq is a Turing-complete machine having
only one instruction.

subleq a b c

� *(b)=*(b)-*(a)

� if the result is negative or zero, go to
c else execute the next instruction.

The Subleq Machine

Since subleq has only three arguments and
since there is no confusion of instructions
possible (there is only one!), a subleq code
can be regarded as a sequence of triples.

a1 b1 c1
a2 b2 c2
a3 b3 c3
:

…interleaved with data

Since data can be embedded in the code,
the sequence of triples can be interleaved
with data. For instance:

a b ca1 b1 c1
data1 data2

a2 b2 c2
data3

a3 b3 c3
:

How does it work?

*b = *b-*a;

if (*b≤0)
program_counter = c;

elseelse
program_counter = program_counter+3;

Genealogy

Subleq is an OISC (“One Instruction Set Computer)
which comes from the Minsky machine concept.

The Minsky machine is a register machine with only
two instructions: “increment” and “decrement-and-
branch”.
two instructions: “increment” and “decrement-and-
branch”.

Allowing for comfort

Memory is loaded with instructions and data
altogether (no distinction).

Hence the code can potentially self-modify andHence the code can potentially self-modify and
consider that any cell is a, b or c.

We can pre-store constants (like 0,1 etc)

e.g. we devote a cell called Z to contain zero, N to
contain -1

What does this do?

subleq Z Z c

JMP c

subleq Z Z c

What does this do?

subleq a a $+1

CLR a

subleq a a $+1

What does this do?

CLR b

subleq a Z $+1

subleq Z b $+1subleq Z b $+1

CLR Z

MOV a b

subleq b b $+1 *b=0

subleq a Z $+1 Z=-*a

subleq Z b $+1 *b= 0- (- *a)=*asubleq Z b $+1 *b= 0- (- *a)=*a

subleq Z Z $+1 Z=0

What does this do?

subleq a Z $+1

subleq b Z $+1

CLR cCLR c

subleq Z c $+1

CLR Z

ADD a b c

subleq a Z $+1 Z=0-*a

subleq b Z $+1 Z=-*a-*b

subleq c c $+1 *c=*c - *c= 0subleq c c $+1 *c=*c - *c= 0

subleq Z c $+1 *c=0+*a+*b

sublez Z Z $+1 Z=0

What does this do?

CLR t

CLR s

subleq a t $+1

subleq b s $+1subleq b s $+1

subleq s t $+1

CLR c

CLR s

subleq t s $+1

subleq s c $+1

SUB a b c

subleq t t $+1 *t=0

subleq s s $+1 *s=0

subleq a t $+1 *t=-*a

subleq b s $+1 s=- *bsubleq b s $+1 s=- *b

subleq s t $+1 t=-*a+*b

subleq c c $+1 *c=0

subleq s s $+1 *s=0

subleq t s $+1 *s=0-(-*a+*b)=*a-*b

subleq s c $+1 *c=0-(*a-*b)=*b-*a

What does this do?

CLR t

subleq a t $+1

CLR s

subleq t s $+1

subleq b s c

BLE a b c

subleq t t $+1 t=0

subleq a t $+1 *t=-*a

subleq s s $+1 *s=0

subleq t s $+1 *s=*a

subleq b s c *s=*a-*b

if *a-*b ≤≤≤≤0 goto c

What does this do?

CLR t

subleq a t $+1

CLR s

subleq b s $+1

subleq s t $+1

subleq N t c

BHI a b c

subleq t t $+1 *t=0

subleq a t $+1 *t=-*a

subleq s s $+1 *s=0

subleq b s $+1 *s=-*b

subleq s t $+1 *t=-*a+*b

subleq N t c *t=-*a+*b-(-1)

if *b-*a+1 ≤≤≤≤0 goto c

What have we got so far?
JMP a goto a

MOV a b *b=*a

SUB a b c *c=*b-*a

ADD a b c *c=*b+*a

BHI a b c if *b - *a+ 1≤≤≤≤0 goto cBHI a b c if *b - *a+ 1≤≤≤≤0 goto c

if *b<*b+1 ≤≤≤≤*a goto c
if *b<*a goto c

if *a>*b goto c

BLE a b c if *a-*b ≤≤≤≤0 goto c

if *a ≤≤≤≤*b goto c
CLR a *a=0

What does this do?

MOV b v

MOV a w

CLR cCLR c

subleq N c $+1

subleq w v $+4

subleq Z Z $-8

What does this do?

MOV b v *v=*b

MOV a w *w=*a

CLR c *c= 0CLR c *c= 0

subleq N c $+1 *c=*c-(-1)

subleq w v $+4

subleq Z Z $-8

What does this do?

MOV b v *v=*b

MOV a w *w=*a

CLR c *c= 0CLR c *c= 0

subleq N c $+1 *c++

subleq w v $+4 *v=*v-*w if(*v ≤≤≤≤0)
subleq Z Z $-8 else

What does this do?

MOV b v *v=*b

MOV a w *w=*a

CLR c *c= 0CLR c *c= 0

subleq N c $+1 *c++

subleq w v $+4 *v=*v-*w if(*v ≤≤≤≤0)
subleq Z Z $-8 else

What does this do?

*v=*b

*w=*a

*c= 0*c= 0

*c++

*v=*v-*w if(*v ≤≤≤≤0)
else

DIV a b c

*v=*b

*c= 0*c= 0

*c++

*v=*v-*a if(*v ≤≤≤≤0)
else

DIV a b c

*v=*b

*c= 0*c= 0

*c++

*v=*v-*a if(*v ≤≤≤≤0)
else

DIV a b c

*v=*b

*c= 0*c= 0

*c++

*v=*v-*a if(*v ≤≤≤≤0)
else

What does this do?

CLR u;v;w

MOV b v

subleq N w $+1

subleq u u $+1subleq u u $+1

subleq a u $+1

CLR c

subleq u c $+1

subleq w v $+4

subleq Z Z $-8

What does this do?

CLR u;v;w *u=*v=*w=0

MOV b v *v=*b

subleq N w $+1 *w=0-(-1)=1

subleq u u $+1 *u= 0subleq u u $+1 *u= 0

subleq a u $+1 *u=-*a

CLR c *c=0

subleq u c $+1

subleq w v $+4

subleq Z Z $-8

What does this do?

*v=*b

*w=0-(-1)=1

*u=-*a

*c=0

subleq u c $+1

subleq w v $+4

subleq Z Z $-8

What does this do?

*v=*b

*w=1

*u=-*a

*c=0

subleq u c $+1

subleq w v $+4

subleq Z Z $-8

What does this do?

*v=*b

*w=1

*u=-*a

*c=0

subleq u c $+1 *c=*c-*u=*c+*a

subleq w v $+4

subleq Z Z $-8

What does this do?

*v=*b

*w=1

*u=-*a

*c=0

subleq u c $+1 *c=*c+*a

subleq w v $+4 *v=*v-*w if…

subleq Z Z $-8

What does this do?

*v=*b

*w=1

*u=-*a

*c=0

subleq u c $+1 *c=*c+*a

subleq w v $+4 *v=*v-1 if…

subleq Z Z $-8

What does this do?

*v=*b

*w=1

*u=-*a

*c=0

subleq u c $+1 *c=*c+*a

subleq w v $+4 *v-- if…

subleq Z Z $-8

What does this do?

*v=*b

*w=1

*u=-*a

*c=0

subleq u c $+1 *c=*c+*a

subleq w v $+4 *v--; if(*v ≤≤≤≤0)
subleq Z Z $-8

What does this do?

*v=*b

*w=1

*u=-*a

*c=0

subleq u c $+1 *c=*c+*a

subleq w v $+4 *v--; if(*v ≤≤≤≤0)
subleq Z Z $-8 else

What does this do?

*v=*b

*w=1

*c=0

subleq u c $+1 *c=*c+*a

subleq w v $+4 *v--; if(*v ≤≤≤≤0)
subleq Z Z $-8 else

What does this do?

*v=*b

*c=0

subleq u c $+1 *c=*c+*a

subleq w v $+4 *v--; if(*v ≤≤≤≤0)
subleq Z Z $-8 else

What does this do?

*v=*b

*c=0

subleq u c $+1 *c=*c+*a

subleq w v $+4 *v--; if(*v ≤≤≤≤0)
subleq Z Z $-8 else

What does this do?

*v=*b

*c=0

*c=*c+*a

*v--; if(*v ≤≤≤≤0)
else

MUL a b c

*v=*b

*c=0

*c=*c+*a

*v--; if(*v ≤≤≤≤0)
else

MUL a b c

*v=*b

*c=0

*c=*c+*a

*v--; if(*v ≤≤≤≤0)
else

MUL a b c

*v=*b

*c=0

*c=*c+*a

*v--; if(*v ≤≤≤≤0)
else

What does this do?

MOV a L1

data Z

data Zdata Z

L1: data Z

BRX a

MOV a L1 *L1=*a

data Z

data Zdata Z

L1: data Z

What does this do?

subleq b Z L1

subleq Z Z L2

L1 subleq Z Z $+1L1 subleq Z Z $+1

subleq Z b c

L2 subleq Z Z $+1

BEQ b c

subleq b Z L1 Z=-*b if Z ≤≤≤≤0
subleq Z Z L2 else reset Z

L1 subleq Z Z $+1 reset ZL1 subleq Z Z $+1 reset Z

subleq Z b c *b=*b-0 if *b ≤≤≤≤0
L2 subleq Z Z $+1

c

What else do we need?

Boolean operations such as AND, XOR.

Assuming that we have AND, we can design the
XOR:XOR:

)BA(2BAAB2)AB(2)AB(2BA i

7

0i
i

1i
i

7

0i
i

i
i

7

0i
i

i ∧+⊕=+⊕=+=+ ∑∑∑
=

+

==

Where is all this going?

The machine can do everything a smartcard
can do.

Still, it’s execution is hyper-regular.Still, it’s execution is hyper-regular.

Eliminates instruction-dependent leakage.
Only leakage is data-dependent.

Where is all this going?

A “reductionist” approach.

Push all security issues into the subleq
machine. machine.

If the subleq machine is side-channel
resistant then no matter what algorithm
we implement on it, the implementation is
side-channel resistant!

Where is all this going?

But any algorithm can be coded on the
machine.

Hence it suffices to concentrate all effort Hence it suffices to concentrate all effort
on protecting the machine.

But the machine is very simple, hence
(conceivably!) much easier to secure than
an AES or RSA coprocessor.

Hardware Architecture

• We assume that we have a RAM initialized
with the code.

RAM
Read[i]

M[i]

Hardware Architecture

• We assume that we have a RAM initialized
with the code.

RAM
Read[i+1]

M[i+1]

Hardware Architecture

• We assume that we have a RAM initialized
with the code.

RAM
Read[i+2]

M[i+2]

Hardware Architecture

• We assume that we have a RAM initialized
with the code.

RAM
Write[i+1]

M[i+1]-M[i]

Hardware Architecture

• We assume that we have a RAM initialized
with the code.

RAM
Write[i+1]

M[i+1]-M[i]

What Have We Done?

Implemented the machine in FPGA (600 CLBs),
wrote a compiler.

Circa 7 subleqs per 8-bit assembler instruction.
But the machine is so simple that clock can be very
fast.

But the machine is so simple that clock can be very
fast.

Explored variants:
SUBXORLEQ, SUBLEQXOR, SUBANDLEQ, etc.

Paper underway (soon on ePrint).

