MNFEN-BEXFERTMENTS ON SEQUENTTAL MACHINES

Edward F. Moore

INTROCUCTION
1

This paper 18 oonoerned with inite automata’ Crom the
exparimental point of view. This does not mean that [t reports the
results of any experimentation on actual physical models, but rather 1t
is concerned with what kinds of conclusions about the Internal conditions
of 2 Tinite mechine it iz posaible to draw from external experiments. To
emphaeize the conceptual nature of theas experiments, the word "gedanken-
experiments” has besn borrowed from the physioists for the title.

The sequential machines considered have a finite number of states,
a finlte mumber of posasible Input eaymbols, and a finite number of poassible
cutput symbols. The behavior of these machinea is atriotly deterministic
{1.e., no random elsments are permitted in the machines) In that the
present state of & machlne depends only on its previous Input and previous
state, and the present output depends only on the present atate.

The point of view of this paper might also be extended to pro-
babilistle machines (such as the noisy diserete channel of communiestion
tlmr:rya}, but this will not be attempted here.

EXPERTMENTS

There willl be two klnds of experiments considered in this paper.
The first of these, called a simple experiment, le depicted in Flgure 1.

"Mhe term "finite" is used to distinguish these automata from Turing
machings [conalderad Iin Turdng's "On Computable Fumbers, wlth an
Applicatlion to the Entacheldungasproblem”, Proe. Lond. Math. Soc.,
{(1956) Vol. 24, pp. 23%0-26%] which have an Infinite tape, permitting
them to have more complleated behavior than these automats.

EIh’fiﬂeﬂ in Shennon's "A& Mathematlcal Theory of Communleatlion”, B.S.T.J.
VEII. 2“-"1 pl hﬂl‘:’l-
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FIGURE 1. Schomatic Disgram of a Simple Bxperiment

A copy of the sequential machine beinfg chaarved experimentally
will rocelve succeassively certaln input symbols from the experimenter.

The sequence of cutput symbols will depend on the sequence of Input
aymbols (the fact that the correspondence ls between sequences rather than
Individual symbols is responsible for the terminology "sequentlial machine")
in a way that depends on which partlicular sequentlal machine ls present
and its initisl state.

The experlmenter will choose which finlte sequence of Input
symbols to put into the mschine, elther a fixed sequencte, or ans in which
each symbol deponds on the previous cutpul symbola. This sequence of
input symbols, together with the sequence of output aymbols, will be called
the cutcome of the experiment. In additlon there can be a conclusion which
the experimenter emits, the exact nature of which need not be specilied.
The conclusion might be thought of as a message typed cut on a typewrlter,
such aa "The machine belng experimented on was in atate a, at the
beglnning of' the experiment". It 158 required that the conclusion depend
only on which experiment ia beling performed and what the seguence of output
symbols waa.

The second kind of experiment considered In this paper 1s the
multiple experiment, showm In Plgure 2.

In thiz case the experimenter has accessa to several coples of the
same machine, each of whiech 1s initially In the same state. The experi-
menter ocan send different sequences of inputs to each of these K coples,
and receive from each the corresponding cutput sequence.

In each of these two kinds of experiments the experimenter may
be thought of as a human belng who I= trylng to learn the answer to some
guestlon about the nature of the machine or its inltlal state. Thia is
not the only kind of experlmenter we might imagine in application of this
theary; in particular the experimenter might be another machine. One of
Lhe problems we conslder la that of giving expllicit Instructlons Tor
performing the experiments, and in any case for which this problem is
cumpletely solved 1t ls possible to bulld a machine which could perform
the experiment.
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EXAMPTES

It may be Instructive to conslder several situstions for which
this sort of theory might serve az a mathematical model.

The first example i= one in which one or more copies of aome
secret device are captured or stolen from an enemy In wartims. The
experimenter's job is to determine in detall what the device does and how
it works. He mmy have partial informatlon, e.g., that it i1a a bomb fuze or
& oryptographic device, but 1ts exact nature is to be determined. There
Is one special situation that can occur in such an experiment that ts
worthy of note. The device being experimented on may explode, particularly
Iff 1t is a bomb, & mine, or some other Infernal machine. Since the
experimenter la presumably intelligent enough to heve antlcipated this
possibllity, he may be assumed to have conducted his experimentation by
remote control from & safe distance. However, the bomb or mine is then
destroyed, and nothing further can be learned from 1t by experimentation.
It is interesting to note that this situetion can he represented exactly
by the theory. The machine will have some special atate Uy, the exploded
atate. The transitions defining the machine will be such that there exists
a sequence of inputs that can cauaes the machine to go into stats q., but
no Input which will cause 1t to leave the state. Hence, 1" the experi-
menter happens to give the wrong sequence to the machine, he will be unable
to learn anything further from this copy of the machine.
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There 18 s somewhat artificial restriction that wlll be 1mpossed
on the action of the experimenter. He 1s not allewsd to open up the
machine and look at the parts to see what they are and how they are Inter-
connected. In this militery situation, such a restriction might correapond
to the machine being booby trapped so as to deatroy iltsslf If tampered with.
It might also correspond to an instance where the componsnts are so
unfamiliar that nothing can be gained by looking at tham. At any rate, we
will always lmpose this somewhat artificial restriction that the machlines
under consideration are alweys just what are sometimes called "black boxes™,
dezeribed In terms of their inputs and outputs, but no Internal construction
Information can be gained.

Ancther application might cecur during the course of the deaign
of mactusl automata. Suppose an engineer has gone far encugh in the design
of some machine intended as a part of a digital computer, telephone central
office, automatic elevator control, etc., to have deacribed his machine In
terma of the liast of atates and transitlona between them, as used in this
paper. He may then wish to perform some pedanken-experiments on his
intended machine. I he can find, for Instance, that there 1s no experl-
mental way of distinguishing his dealgn from some machine wlth fewar
states, he might as well build the simpler machine.

It should be remarked that from this engineering point of view
certain results clossly paralleling parts of thls paper (notably the
reduction deseribed in Theorem L) have recently been independently found by
D. A. Huf'fman in his Ph.Dx. thesls in Eleotrical Engineering (M.I.T.). Hils
results are to appear In the Journal of the Franklin Inatitute.

d3ti11l another situation of which this theory 13 a mathematical
model occura in the case of the psychiatrist, who experiments on a patient.
He gives the patient inputs (mainiy verbal), and notes the outputs (agaln
mainly verbal), using them to learn what is wrong with the patient. Ths
black box restriction corresponds approximately to the distinetion between
the psychiatrist and the brain surgeon.

Finally, another situation of which this might concelvably be a
mathematical model cccurs when a scientlst of any sort performs an experl-
ment. In physics, chemistry, or almost any other sclence the Inputs which
an experimenter puts into his experiment and the ocutputs he gets from it
do not correspond exactly to the things the experimenter wishes to learn
by performing the experiment. The experimenter la Crequently forced to ask
his guastions in indirect form, because of restrictions Imposed by
intractable lawa of neture. These restrictions are somewhat aimilar in
their affect on the organization of the experiment to the black box
restriction.
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The apnalogy between this theory and such sclentific experimenta-
tion 1s not as good as In the previous situations, because aotual sxperi-
ments may be continucus and probabilllstic (rather than finlte and
deterministic}, and alap because the experiment may not be completely
isplated from the experimenter, l.e., the experimenter may be experimenting
on & system of which he himself 13 a part. However, certain qualitative
results of the thesory mey be of Intereat to those who like to speculate
about the basle problems of experdmentsl sclence.

CONVENTIONS

Each machine will have a finite pumber n of statea, which will
be called Qi Qps +--» Q, & finite mumber m of possible input symbols
wihich will be called 31. 52‘ — Em, and a finite mumber p of possible
output symbola, which will be called sm“, Sm+2, wihn Bmp. In several
examples used in this paper we will have m = 2, p = 2, 3, -Ej = O,
and EE = Su e Ta

Time 1s assumed to come in discrete asteps, so the machine can be
thought of as a synchronous device. BSince many of the component parts of
actual automata are varlable in their speed, this assumption means the
theory bas not been stated in the mwost general terms. In practice, some
digital computers and most telephone central officss have been designed
asynchroncusly. Howeaver, by providing & central "clock" source of uniform
time intervals it 1s possible to organize even asynchronous components so
that they mct in the dlscrete time ateps of a synchronous machine, Digltal
computers and other electronic automata are usually tullt in thia
synehronous fashion. The synchronous convention is used in this paper aince
1t permits simpler exposition, but the fact that these results can be
translated with very 1little change into aaynchronous terms should be
obvicus from the fact thaet Huffman wrote his paper 1n terms of the
aaychronous case.

The state thet the machine will be in at a given time depends
only on its state at the previous time and the previous input symbol. The
output symbol at & given time depends only on the current state of the
machine. A table used to glve these transitions and cutputa will be used
aa the definition of & machine, To 1llustrate these conventiona, let ua
conalder the following example of a machine:
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Machine A
Prosent State
Frevious Previous Input Present Presant
State 0 1 State Output
q.-| Qh Qj q“l a
Qy = = A, ')
M Qs z a 1

Thess two tables give the complete definition of a machine
(lebelled machine A, for future reference). In the left table, the present
state of the machine 1s given ms a functlon of the previous state and the
previous input, In the right table, the present output of the machine 1s
given as a8 functlon of the present atate.

An alternate way of representing the descriptlon of & machine
can also be used, which may be somewhat more convenlent to follow. This
other representation, called a transition diagram, consiste of a graph
whose vertices correspond to the states of the machine represented, and
whose edges correzpond to the possible tranaltlions betwesn those statea.
Each vertex of thls transition disgram will be drawn as a small slrele,
in which 1s written the aymbol for the corresponding state, a semicolon,
and the output which the machine gives in that state.

BEach palir of these circles will e joined by & line Af there is
a direct transition possible between the corresponding palr of states. An
arrowhead will point in the direction of the transition. Beslde each sush
line there willl be written a 1iat of the possible input symbols which can
cause the transition. Below 1s given a transition disgram for machine A;

FIGIRE 5. Transition Diagram of Machine A
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An experiment can be performed on this mechine bty giving it some
partloular seqguence of ioputs. As an example, the sequence 000100010
might be used. If the machine 1s initially in the state q,, the outcome
of this experiment would be:

¢ 0o 0 ! o e o0 1 0
9 9 9 94 9y 9, 9; 9 94
0 1 ¢ o o 1 o o o0

where the first line of the sbove is the sequence of inputa, the second
line 13 the sequence of atates, and the third line is the sequence of
outputs. The laat two lines can be obtained from the first by use of the
tabular definition of machine A or its tranaltion diagram. It should be
emphanlzed that only the bottom line of the above ls cbservable by the
experimenter, and the sequence of states 1s hidden away, usable only 1in
arriving ot or explaining the observable resulta of the experiment.
Suppose that the same sequence of inputs mentioned sbove 1s
presented to machine A, initlslly In some other state. The outcoms of the
experdment would be one of the followlng, according es the initial state

1a Qs q;j, or gt

[4] 4] ] 1 o 1] 4] 1 4]
9% g 9y 9 q-} qy 9% q A5
o a ¥ a o 1 ] o o
a o 0 1 ] o 0 1 0
Qj qk QE '11 '-'13 q.jl qE ‘11 QJ
0 1 n] (8] o 1 o [s) [¢]
Lu] Q [¥] 1 ] 8] [s] 1 L8]
W B K B B FH Y G 9
1 o o 1 4] [} 1 o 1]

Even though thls example of an experiment involved putting a
predetermined sequence of inpubt symbols into the machine, 1t should not be
assumed that this Ia the only kind of experiment permitted. In general,
the Inputs to the machine can depend on its previous outputs, permitting
the course of the experiment to branch.

There would be several ways of specifyling such a branching
experiment, but for the purposes of this paper, & loose verbal description
ol such experiments will he used. If 1t were desired to make these
descriptlons more formal, the experimenter could be deseribed as another
sequential machine, also speclfied in terms of 1ta internal states, inputs,
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and cutputs, The cutput of the machine belng experimented on would servae
a8 1lnput to the experimenter and viee versa., The sxperimenter would also
have another ocutput In which 1t would summarize the results of the experi-
ment, Indleating what hes besn learned about the machine by the experiment.

In the simple sequence given above as an example of an experiment,
1t 13 natural to define the length of the experiment am 9, =ince this 1s
the number of terms in the Input sequence, and the mumber of dlserete stepa
of time required to perform this experiment. Put In the case of an expesri-
ment with posaible branches during its performance, some of these branches
may lead to a conclusion more gquickly than others. In thls cass the length
requiraed for the longest possible alternative would be taken as the length
of the experiment.

Although a branching experiment 1s the most general type of
deterministic experiment; most of the experiments which will be requlred
in the proofs of this puper can simply be esequences. For exmmple, the
shortest simple experiment which can be umed to dlatingulah betwesn two
states (of the same or different machines) iz merely a sequence. For if
this 1s the shortest experiment, the result 1s not kmown untll the last
step, 1.e., the output sequences comlng to the experlmenter are the same
except for the lasst term. This term comes too late to affect any part of
the experlment.

Two machines, 38 and T; will be sald to be lsomorphic 1f the
table descrlblng & can be obtalned from the table deseribing T by
substituting new names for the states wherever thay ococcur as elther the
argpumenta or the entrles of the table. Clearly, lsomorphlc machines will
always have the same behavior, and will be indistinguishable from one
another by any experliment.

Since dlstingulshabllity has alresdy been referred to several
times, and 1s vital to every proof in this paper, 1t wlll be explained in
some detall .

A state g, of a machine 5 willl be sald to be Indlstinguishable
from a state q.i of & Af snd only if every experiment performed on 8
starting in state q; produces the sams outoome as it would starting In
atate qj.

A palr of states will be sald to be distingulshable if they are
not Indistinguishable. Hence, a is indfatinguishable from qj if and
only 1f there exlats some experiment of which the outcome depends on which
of thess two states 85 was in at the beginning of the experiment.

Similarly, we can say thaet B state a4 of A& maohine 8 is
tllatingulishable (or indistinguishsble) from & state q; of a machine T 1f
there exists an experiment (or there does not exist an experiment) of which
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the cuteome starting with machine S5 in atate e differs from the
cutecome atarting with machine T In atete aq..

Finally, distingulshability and indistinguishability can be
deflned for palrs of machines. & machine 8 will be said to be
dlstinguishable from a machine T if and only if at least one of the
following two conditlons hold: either

(1} there exists some atate ay of 8, and soms experiment

the outcome of which beglnning with 2 in atate oy

differs from its cutcome beginning with T in sach of 1ts

states; or

(2) there exiats some statse a aof T, and some experiment

the cutcome of which beginning with T in atate q.

differs from Its outcoms beglmming with 3 1in sach of

1ts ataten.

3 and T will be saia to be Indistinguishable I1f and only 1ff
they are not distingulshable, or, in other words, if' both of the following
two condltlons hold:

(1) for every state qq of &, and every sxperiment, there

axlats a state qj of T such that the experiment

beginning with machine 8 In state qy produces the same

outeoms as the experiment beglnning with machine T in

atate g 50 and

(2) for every state gq. of 7T, and every experiment, there

axiste a atate 9y of 3 such that the experiment beginning

wWith machineg T in state gq. produces the same cutcome &s

the experiment beglinning with machine 3 In state g,.

I 5 1s Indistingulshable from T, then the two machines are
alike in thelr behavicr (although they may differ in their atructure), and
may be thought of as being interchangesble, In any practical application
of' real machinea, the manufscturer can take advantage of this equivalence,
and produce whichever of the two machines Is cheaper to bulld, easaler to
repair, or has some other desirable internal property.

Distinguishabllity and indlstingulahabllity are deflned here sa
binary relations. That is, they hold between & palr of machines or & palr
of states. Thiz doss not mean that sn experiment which dlstinguishes be-
tween them must be & multiple experiment. In many cases a simple ezperd-
mant sufflcea. In any event, we perform the experiment on Just one of the
twe machines or states we wish to dlstinguish, and 1ts cutcome depends on
whilch of the two was present. In these caszes we may think of the conclu-
slon whieh the experimenter reasches ag being of the form: "If the machine
belng examined wae elther 85 or T, then 1t 13 now known to be T.7



138 MOORE

This is certalnly an extramely elementary kind of a conclualon,
wihich maekes a blnary cholce betwssn two alternatlves. Part of thls paper
will deal with methods of bullding up more complicated eoncluslona Crom
auch elementary onea,

An obvious modification of distlngulshabllity is to state whether
the machines which can be distingulshed reguire multiple experiments to
tell them apeart or not. In the caze of palra of stateas, the two kinds of
distingulshabllity can easlly be seen to colnelde.,

In the course of the proofs glven below, 1t will frequently be
convenlent to look at experiments in terms of what 1s actually happening
inside the machines. Although the experimenters are not permltted to look
1nslde the black hoxes; we are under no such restriction. In fact, we wlll
be able to lsarn more about the limitations imposed by the black box
restriction 1f we have no such restrictlon on our chasrvations, construc-
tiona, or proofs.

AN ANALOGUE OF THE UNCERTAINTY PRINCIPLE

The firat theorem to be proved will be concerned with an
Interesting qualltatlve property of maslhines.

Theorem 1: There axlsts o machine such that any palr of its atates are
distingulshable, but there 1s no simple experlment which can determine
what state the machine was in at the beglnning of the experiment.

The machine A, already described on the previous pages, satls-
flas the conditions of the thecrem. The previously described experiment
will distinguish between any pair of states, except the palr {q1. qj}.
That la, given any other pair of states, 1f 1t Is known that the machline
la In one state of this pair st the beginning of the experliment, applying
thlz experiment will give an output that depends on which state the
machine was in. In order to distingulsh batween q, and Qys the experi-
ment ahould conslst of applylng the sequence 11. The outcome of thie
will be:

1 1 1 1

q, q} Q3 aQ
o o o

Thus there exists a simple experiment whlch can distinguish
between any palr of statea. Purthermore, the multiple expariment which
usgas two copies of the machine, sending one of the two previously men-
tloned sequences to each, omn obtaln enough information to completely
specify what astate the machine was in at the beginning of the experiment.
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To complete the proof’, it need only be shown that given only one
copy of machine A, there 1s no experiment which can determine whether it
was 1n state a, at the beginning of the experiment.

It Is eclear that any experiment wlll dlstinguish betwsen qQ,
and q,, slnce the flrat output symbol will be different. But any simple
experiment that distinguishes q, from gq,, cennot distinguish q, from
Gy To sea thls, note that any experiment which begins with the input 1
does not permit q, to be distinguished from a, (sinece in either case
the firat output is 0 and the second state ia Qzs 80 that no futurs
inputs can produce different cutputs)., Simllarly any experimsnt which
begins with the Input 0 does not permit q, to be dlstinguished from Qs -

This result can be thought of as being a discrete-valusd analogus
of the Helsenberg uncertainty principls. To point out ths parallel, both
the uncertalnty prineiple and this theorem will be restated in almilar
languags .

The atate of an glectron E will be considered specified if
both 1ts velocity and ita position are kmown. Experiments can be performed
which will answer either of the followlng:

(1) What was the position of E at the beginning of the experiment?
(2) What was the velocity of E at the beginning of the experiment?

In the case of machine A, experiments can be performed which
w11l answer elither of the following:

{1} Was A& in state 9, at the beginning of the experimentt?
{(2) Was A 1in state q, &t the beginning of the experiment?

In elther case, performing the experiment to answer guestion 1
changes the state of the system, ao that the answer to guestion 2 cannot
be cbtained. In other words, 1t ls only possible to galn partial informa-
Lion about the previous history of the system, since performing experiments
causes the system to "forget" about its past.

By analogy with the uncertainty principle, could we almo state
that the fature state of machine A cannot be predlcted from past experd-
mental resultat Here the analogy ends. Even though we cannot learn by
experiment what state machine A was in at the beglmning of the experiment;
we can learn what state 1t 1s 1n at the end of the experiment. In fact,
at the end of the first experiment described, machine A will bBe 1in one
particular predetermined state (independent of its initisl atste), namely
the atate Qs

Despliie the Incompleteness of the anslogy, 1t does seem interest-
Ing that there ls an anaslopue of the uncertainty principle in this dlscrete,
determiniatic aystem. Any applications of thlas example to causality, frees
will, or other metaphysical problems will be left to the reader.
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FURTHER THEOREMS CN DISTINGUISHABRILITY

Theorem 2: Gilven any machine 38 and any multiple experiment performed on
5, there exlst other machines exXperimentally distinguishsble from 3 for
which the original experiment would have had the asme outoome.,

let 8 have n stlates R and let the experiment have
lepngth k. Then define a machine T having nf(k+i) atates Qs Qys =ver
qﬂ{k+1} as follows:

If the machine 3 gzoes from state qy to qj whati 1t recelvaes
the input symbol &, then let T go from Uitn to D44 (t+1)n under the
same Input, for all t such that 0 <t <k, but let T go from U okn
to qj+kn'

If the machine 3 has output symbol b in state g, let n
bave output symbol b 1n state Ut for 0<t <k, but let T have
aome output symbol different from b In atate Qi pien”

Then st the step t+1 of any simple experiment, the machine T
will be 1n state Q. 4n whensver machine & 18 In state dy and
0<t«< k. But at any step later than tha th, machine T will be in
shate Y i Thas it cen be seen that for the first k ateps of any
elmple experiment, the outputs of 8 and T will be alike. But after
the kth atep, the outputs of 5 and T will always be different., The
axtension to multiple experiments 1is Immediate.

This result mesns that 1t will never be posaible to perform
experimants on & completely unknown machine which will suffice to ildentify
1t from among the class of all sequential machinessa. If, however, we
restrict the clasa to be a ameller one, 1t may be possible. In particular,
much of the rest of this paper will be concerned with the case where the
class conalsta of all machines with n states or fewer, m Input symbols
ap fewer, and p output symbols or fewer. Buch 8 mechine will be celled
an (n, m, p) machine.

Definition: A machine 8 will be said to be strongly connected A for
any ordered pair (g, q.) of states of §, there exlsts a sequence of
inputs which will take the machine from state Oy to atate q,.

The term "strongly comnected" is used slnce sny such machine will
have & transitlion dilagram which is s connected graph, but the converas 1s
not true. A counter-exsmple to the converse 1s glven by the followlng
machlne:
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Machine B
Present State

Previoua Previous Input Presant Freasent
State 0 1 State utput

a, b A5 9, 9

9 9 O 95 !

Q5 q, s Qj o

Ay Qs % Sy o

FIGURE 4. Transitlon Dlagram of Mschine B

Theopem 5: If S5 18 & strongly coorected maching, and T 1s indistin-
pulshable from S by any simple experiment, then for avery atate a3 of

5 there exists a state q off T which 1s Indlstingulshable from g, by
any elmple experlmsant.

Since T 12 lndistingulshable from 3 by any simple experiment,
we have, as one of the two condltlona implied by Indistinguishabllity, that
glven any atate d4 of 8, and any simple experiment on & beglining in
state g,, there exlats a corresponding state g, of T such that the
aame experiment, starting with a copy of T In state qj. will produce
the same sequence of output symbols. This theorem states that if B8 ia
atrongly connacted, qJ ¢an be chosen independently of the experiment.
That 1=, 'q, correaponds to qy for all experdiments, rather than Just
this particulsar experiment.

To prove the theorem [lrst note that 1 we conalder an experiment
conaleting of any sequence of input symbolas applled to machine B8 in state
q there must have been states of T whlch would have glven the same
sequence of outputa. Wlth esch such sequence of Input symbols, we mssociaste
the set of stotes that machine T eould be in at the end of this ssguence
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after having produced the sems sequence of outputs that 8§ would produce
atarting in state q,- Then if we langthen the sequence of input symbols,
the number of elements In the asscelsted set can only decremse, but it can
never become zero (or else this would give an experimsnt which distinguishes
8 from T).

Hence, we can choose s particular seguence and extend 1t until
the mmber of elements in the asacelsted set of atatea of T ecan no longer
be decreased by any further extension. Then we add to this segquence a
further seguence which will cause machine 38 to go succeszively into every
oneg of its states at lsast once, if the entire sequence 13 applled starting
In atate q,-

Then for each atate Gy of 3, conslder the set ¥ of statas
which are asscciated with the subsequence obtalned by truncating the
ocriginal sequence at the last time 1t causea 3 to go into atate 0y -

Then ¥ 18 non-smpty, and every member ls indistinguishable from q-
This follows from the faot that if q; is s member of ¥ and 1= dlatin-
guishable from Ay s the experiment that distinguishes them defines a
sequence, which when added to the truncatsd sequence above, would glve &
further reduction of the number of elements 1n lts assoclated set. But
this contradicts the definition of the orlginal sequence.

Note the words "strongly connected" cannot be removed from the
statement of Theorem 5. A counter-example 1s glven by machine B, def'lned
Just before Theorem 3, which ls Indistinguishable by any simpls experiment
from the machine BY, defined by removing the bottom row from sach of the
two tables that define machine B. However, the satate qQy of machine B
la distingulshable from every state of BY.

Theorem b:; The clasa of all machines which are indlstinguishable from a
glven strongly connected machine S by any simple experiment has a unique
{up to an 1somorphlsm) member with a minimal number of statea. Thie unlgue
machineg, callsd the reduced form of 38, ls8 strongly connectad, and also
has the property that any two of lts states are dlstingulshable.

Given any machine T, Iindistingnishable from 8, define the
ralatlon R to hold between states of 5 and atates of T 1f they are
Indistinmiishable by & slmple sxpsriment. That la, the state q, of 8
will have the relation R to the state g. of T If and only If thers is
no saimple experiment which can distingulah them.

Then by Theorem 3 the domsaln of the relatlion R 1s the set of
all states of 8. And, after verlfying the translitivity of indletdngulsh-
abillity 1t can be seen that any two atates of 3 are indlstingulalmbie
from each other 1" and only 1 they are Indlstingulshabile from the sams
atate of T. Hence, the mumber of equlvalence claeses lnto which the
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atates of 3 are partitioned by the eguivalence relation of Indistin-
gulshabllity 13 the smallest number of etates which T ean have.

Lot ua define a machine T¢ with exactly thls many atates,
aesoclating esach ptate with one such equivalence clasa. We can defins the
output symbol for each state of T+ to be the output symbol for any state
In 1ts equivalence class, slncs 1ff the states are Indlistingulshable, they
must glve the same cutput symbols. We define the transitlons by lettlng
state g, of T* go into state qj of T+ upon recelving the input
aymbol a, 1f and only Af some member of the equlvalence class asacclated
with 4y goes lnto some member af' the egulvalence class assoclated wilth
qu upon recelving the dmput symbol a, There 1s never any amblpulty in
thia definitlon, since indlstinmulshable states cannot have transitlons
which take them into distinguishable cnes (or else thls would glve & wey
of dlstinguishing the coriginel Indlstinguishable states).

Hext, T* ocan be seen to be indistinguishable from &5 as an
Immediate oconsequence of its definition. Alse T+ 1s strongly connected,
since to gt between states qy and »::1j of T+, use the seguence whioh
goes from any state in the equivalence class assoclated wlth qy to any
gtate In the equivelence class ssaocolated with 1:1‘j+

Then to show thet T+ ‘13 wndque up to an Isgmorphlam, consider
any other machine 7T, having the same mumber of gtates, and also Indis-
tinguishable from 5. Then since T wlll also be Indiatingulshable from
T*, and T* ia strongly connected we can apply Theorem 3. Then defining
another relatlon R a3 done earlier in the preoof, note that 1t can be seen
to be B 131 correspondence between the states of the two machines, and in
fact, it is the deslred iscmorphism.

Definition: A machine 8 will be said to be in reduced form, if and only
if 3 1s the reduced form of 8.

Theorem 5; If 8 1s a strongly commected machine, then 8 1s in reduced
form, if and only if any palir of its states are distinguishable., To prove
the converse, conslder the relation of indistinpuishebility as in the proof
of Theorem h%: 1t partitions the states of 2 Into equivalence classss,

each having just one member. Hence, the reduced form of 8 as constructed
above has exactly &s many states me 3, and the uniquenese of the reduced

form of 3 completes the proof.
The following is an example of a machine which this theorem showa

to be not in reduced form. This particular example has just one pair of
atates whioch are Indistinguishable:
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Machine C
Present 3tate
Fravious [Previous Input Fresant Present
State s} 1 State Output
% 92 9 9 ?
95 9 9 95 '
Qﬁ Qs B ':l} 0

FIGURE 5. Transition DMagram of Machine C

In connection with these thecrems, 1t might be mentloned that not
every machine indistinpulshable from a strongly connectad machine ia
strongly connected. The machines B and B', previcualy described, also
sarve as an example of this.

Howover, since the reduced form of & machine is unlque and has
no Indistingulshable states, 1t may be thought of 45 & simplified version
of the machline, with all unessentlal ports of 1ts descriptlon removed,

The reductlon of 4 machine to 1te reduced form 1s closely related to one
of the steps proposed by D. A&, Huffman ss & step In the deslgn of
sequentlal machines,

The reduced form willl be considered the natural form in which to
describe & atrongly connected machine, and the remalning theorems of this
paper will be weitten in & form 80 as to apply directly to machines 1n
reduced form. The indirect application of these results to other strongly
connected mechines is slso sometimes posaible.

[ T i
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THECREMZ CONCERNING LENGTHS OF EXPERIMENTS

The theorems proved heretolore have malnly been concerned wlth
gualitative guestions, l.s., whether or not 1% ls possible to perform
experiments which anawer questions about the current state of 8 machine or
ita Internal structure. The remaining theorems will he concernad with how
many steps these experiments require, and thelr proofs willl lnclude methods
for deslgning the experiments.

Theorem 6: If & 1s an {(n, m, p) machine such that any two of 1ts
atates are dlatingulshable, then they are dlstingulshable by a slmple
expariment of length n-1.

For each positlive Integer k, we deflne the relatlion Ftk to
hold between any two states 9 and g, of & if and only if a4 is
Indistinguisbable from a; by any experiment of length k. Silnce sach
Rk can be sean to be an egqulvalence relation, 1t delflnes a partltion Pk
of the set £ of atates of & Into equivalence classes.

Then P, , 15 & refinement of P!:; that ls, 1f two states are
indlatinguiashable by any experiment of length k+1, they are I1ndiatin-
gulshable by an experiment of length k. Fuarthsr, LI Pk does not sub-
divide Z Into subzets having just one member, then Pk-ﬂ 1z a proper
refinement of Pk‘ To show this, choose any two states 44 and 1:1‘f whiah
arg indletinguishable by an experdiment of length k. Since by hypothesis
theay are distingulshable, conslder the shortest ssquence of Inputs which
#111 serve as an experiment to distinguish them, I this sequence of
Inputs ls of length r, conslder the pair of states which Gy and q.’I
ara transformed into by the flrst p-k-1 inputs of this segquence. This
pair of states 1s distingulshsable by an experiment of length l+1 (neamely,
the rest of the shove saguence) but not by any experdment of length k
(for such an experdment would contradict the minimsl length of* the above
sequence ).

Slnce PI partitions Z 1nto at least two subeets (for
otherwise every state would have the same output associated, and hence no
palrs of states are distinguishable) we can prove by induction from above
that 1f k< n - 1, Pk partitions Z 1into at least k+1 subsets, which
for the case k =n - 1+ completes the proof of the theorem.

The above proof’ sugmeste a method for finding the shortest
experimentes for distinguishing between any two states. Flrst conatruct
F,, by subdlvliding Z Into agte of atates glving the same output symbol.
Then, procesding by recursion, Pkn can be esonstructed from Pk' If mny
two states gq; and a undergo transltions Into states which belong to
different clasees of Pl—: upon recelving the same input symbol =, then
a4 and qj should be put Into different classea ol Pk+'|' and a 18 the
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firat aymbol of an experiment for distinguishing between q, and q 1 in
k+1 ateps., I, howsver, under all input symbols q; &and g. remaln
topether in the same classes of Pk’ they are lndiatinguishable by any
expariment of length Xk+1, and hence belong in the same class of Pku'
By contlmilng the recursion untll any desired palr of states can be dis-
tinguished, this method comstructs an experiment. It proceeda backwards;
that im, the laat step of the experlment 1z found first, and at the end of
the construction the flrst step of the experiment ls determined.

The following examples wlll show that the n-1 bound cbtalned
1n the theorem cannot be lowered. For each n > 3, define the mechine
D 1in sccordance with the followlng table:

n
Machine Dn
Present State

Previous Fravious Input Present Present
State 0 1 atate Cutput

4, 9z 9z 9 !

9 Ly | U 9y .

G-y 9y 2 G o

9y 9 -9 L °

Then D 1s an (n, 2, 2) machine such that any two of 1ts
atates are distinguishable, but the shortest experlment which can distin-
puish q, from - T has length n-1.

For the caae n = &, D, 1s represented by the following
transition disgram:

FIGURE &. Transiticn Ddagram of Machline Dy,

Tneoregm 7 I & and T are (n, m, p) machines, such that some state
0y off 8 ocan be distingulshed from state qj of T, then this experi-
ment can be of length an-1.
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First define the machine 8 + T, the direct sumof 8 and T.
The table defining 1t willl contain all of the entrles and arguments oft the
table for 3, plus sntriss and srguments obtained from thoss of the table
far T by replacing a; by U en? for a1l 1. This direct sum 5 + T
contalns as submachines an isomorphle copy of B and ons of T, but it
is of course not strongly connected. Ite transition diagram consists of
the combined (but not comnected) dimgrams for 5 and T, wlth the nomes
of' the states of T chanped to avold amblgiity. Physleally, tha dipect
sum 3 + T can be Interpreted as a black box which has elther the behavior
of & or that of T, with no way of changing 1t bhetween the two kinds of
behavior. 8 + T i1s a {2n, m, p} machine such that certain psira of its
states are distinguishable, and hence by the methods used in proving
Theorem 6, they can be showm to be distinguishable by an sexperiment of
length 2n-1. The experiment distinguishing any two states of 8 + T
alap obviously distinguishes between the corresponding atates of 8 and T.

The following exmmples will show that the 2n-1 bound obtained
in this theorem cannot be lowered. For sach n > 5, deofine the machine

E, 1in sccordsnce with the following table:

Machine Eﬂ
Present 3tate
Previous IPreavious Input Present Present
State o 1 State Output
4, Qs q, 9, 0
9 9i41 959 9 2
Ay a U2 An-1
9 Ay | a,

It can eanlly be verlfied that the sphortest experiment which
distinmlehes a, af Dn f'rom 4, of' En has lemgth 2n-1. PFor the
cage n = 4, the translition diagram of E 15 shown below:

/e
%30T

FIGUHE 7. Transition Dlagram of Machine E,
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Theorem 8: Given any (n, m, p) machine S such that any two of 1lta
states can be diatingulshed, there exlsts an experiment of length
n({n-1)/2 which can determine ths state of 3 at the end of the experiment.

This experiment will be constructed as 1t is belng performed
{since this will in general be a branching experiment, a complete formali-
zation of this construction would involve defining & specific machine which
could perform this experiment). As in the proof of Theorem 3, alter esach
part of the experiment las performed there 1z a corresponding set of states
which the machine could be in at the end of this experiment, Ll.e., which
are compatlble wlth all the cutputs the machine has glven during the
experlment. Glving any one of certaln sequences to the machine will reduce
the number of elementa ln this set of states. Choose one of the shorteat
sequences having thls property, and perform it as the next part of the
aexperiment. Repeat thls proceas until the set of posaible atates has
Just one element, l.e., the atate of the machine la lmown.

It will be proved by induction on k that when the set of
possible states of & has been reduced untll 1t has n-K members, at
moat kl{ke1)/2 units of time will have elapsed. This ia obvlous for
k=1. Forany k<n, let G, be this set having at moat n-kel
mesbers. Also the partitlon Flr.‘ as constructed in the prool of Theorem 6,
partitions the set of states of 5 into at least ke1 classes. Then
Gy,_, must have members belonging to at lesst two different classes of PI:
(otherwise one class of P, has at least n-k+1 members, and the other k
have st least k membera, sc their union, the set of states of 8, must
have at least n+1 members). Consider such a pair of statos belonging to
different classes of P,. An experiment distinguishing them has length ¥k,
and performing this experiment at this point willl eliminate one or the
other of the palir of atates thess will be tranaformed into by thila experi-
ment from the set of posalble states of S. Hence by the feot that the
shorteat saquence having thls property will be used in the construction,
&t moat k more stepa are required to reduce the set untll 1t has n-k
members. Since by Inductive hypothesis only at most (k-1)k/2 units of
time had been used before thls reduction, at moat kK more brlngs the
total to at most k{k+!)/2. To complete the proof, let kK «n = 1.

The following exsmples will show that the n{n-1)/2 bound
obtained in this theorem 1s within s multiplicative constant of the best
possible bound. For each J > 3, dafine the machine Fj In accordance
with the following table:
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Machine F,
Present State
Previous Fravious Input Prasent Present
State 1] 1 State Queput
q Qiez | Dg4s 9 .
4, % 9z % %
9 Q41 44 4 o
qj+1 qj+2 qjﬂ 2341 o
Dje2 Qi43 Az Ui4p o
Q-1 9oy 959 9zj-1 v
Lo Lajer| 9y 9a g 9
Da i+ 9 9, 9z j41 ¥

Then PF. has n = 2j+1 atates, 1s strongly connected, and any
two of ita atates are distinguisheable. It can be shown that the shortest
axperiment which can determine the final stste of 8 oonsists of the
sequence of length J3+j-2 having 5 "0" 1in all poalitlons except the
Firat and those posltlons diviaible by f§+2, 1in which It has & ™", Fop
the case J§ = 5, the transition diagram of Fj is shown below:

FIFRE &. Translition Magram of Machine F
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Theorem 9¢ I En,m,p 1z the claess of all atrongly connected (n, m, p)
machines In reduced form, then there exista a almple experiment of length
at most n™™Zp/nt which, when performed on a copy of any member S of
Hn o, p wlll sufflee to distinguish 8 from sll other members of Rn s

If n =1, the result is obvlous, so the procf willl be unnnarnad
with the case n > 2. Ry m,p Will be considered to have no tec of 1ita
members lsomorphle; that 1s, it wiil consiat of just one of every essen-
tially different strongly connected (n, m, p) machine in reduced form.
Then define the machine E, the direct sum (as in the proof of Theorsm 7)
off all of the members of R, ,m, Apply to £ the sort of experiment
defined in the proof of Thecorem B, reducing the set of pos=ible atates it
could be in untll 1t has only one member. Then this identifies the
machine 3, up to an fsomovphism.

To determing the length of thla experiment, the first atep Is to
note how many membors Rn,m.p hap. Since there are exactly nmLpﬂ
different (n,m,p) machines, the followlng correspondence between every
member of R and n! different (n, m, p} machines will show

n.m;p
R has at most nnmp"‘ n! memberz. In the case of any member T of

n.m:p having exaetly n states, the correspondence can be direct with
1 ?n, m, p} machines obtained from T by all n! permutstions of the

names of the n states, since any two mochines cbtalned from distinet per-
mutations mist be dlstinet. But if T is & member of Rn m, having k
states, with k <n, define the (n, m, p) machine T+ whnaa tranaitions
and outputs apree with T for all a4 with 1 <%, but for all q,; with
k<1<mn, let the output be 0 and Iet all inputs cause a transition
into state Qq,q» and for 1 =n let the output be 0 and all inputs
cause & transition Into atate q, - Then the correspondence can be defined
between T and the n! different {(n, m, p) machines obtalned by per-
muting the names of the n states of T, Then since no two (o, m, p)
machines have been made to correspond to the same member of R
Rn,m,p has at most n™Up"/n! members.

Then, proceeding s 1n the proof of Theorem 85, we can estimate
how many steps mist be necessary to cut down the number of possible states
of'' E. It will be convenient to conslder the subssts of states of I
obtalned from each of the criginal machines. By Theorem 28, at most
n{n-1)/2 steps are required to elimlnate sll but one of the membera of
dry such set. But by Theorem 6, this lsat state can be eliminated (unless
E motuslly is in this state) In at most 2n-1 stepa, But
n{n-1}/2 + 2n-1 < n® for n >2, so sach of the numppfnt subseta
require at most nE ateps.

It seems probable that the n"™ 2p"/nt estimate of this theorem
could be improved conalderably, since In the esrly parts of the experiment
many astates of £ can be eliminated simultareously. But 1t can be seen

n,m,p’
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that the bowul cannot be lowered below =1 by considering the following
abstract model of a combination lock. For each n,m > 2, define a basic
machine Gn g 08 Tollows:

¥

Machine ﬂn.m
Present State

Frevious Pravious Lt Present Present
State 51 52 atale En atate Output

qQ a [a ]+ | g 9, °

a, G |G- | 9z .

94, 4G |H||--- q, 9y e

qn 1

Then & combinatlon lock will be defined a3z an {n, m, 2} machine
whose tables are obtained from those of anm by replacing, for each 1
with 1 < 1 < n-1, exactly one of the q, entries in the 1th row of
the left-hand table above with a g , entry.

The only way to make this glve a 1 output is putting it Into
state q and thi=z will be said to be unlocking the comblnation lock. If
the combination lock is orlginally in stats Qs 1t ean be unlocked only
by glving it exactly the proper input sequence for the last n-1 atepa
before unlocking ft. This input sequence 1s, of courss, called the
comblnation of the lock. The machine H Is an example of a comblnatlon
lock having the combination ©,1,0:

Machine H
Present State

Frevious Frevious Input Fresent Present
State i 1 State Input

q, q, q, q, 0

P q, s a, 0

Qs Qg aQy qy 0

Ay 9 Q q !

FIGURE 2. Transitlon Diagram of Machine H
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For each n, m there are exactly mn_l different comblnation
locks, Suppose you are gliven some unknown combinatlon lock, initially in
state Gy and are required to ldentify which one ls present by an experi-
ment which 1s ss short as possible. Since in the Tirst few steps in the
experiment the lock cannot open, and at any later atep in the experiment
at rrnat one combinatlon lock can open, thls experiment requlres more than
o'  sateps.

FURTHER FROELEMS

) There are many further problems connected with this theory of
sgquential machines from the experimental polnt of view, which the author
hes not yet been able to solve.

Cne problem would be to find classzes of machines more general
than the strongly connected machines about which reasconable theorems can
be proved. It should be polnted out that 1t was convenlent to use dlrect
sum machines (which are certainly not strongly connected) in two of the
procfd. Infernal machines and the ordinary household electrleal Tuse
provide important examples of machines which are not strongly connected.

Other problems which immedlately sugpest themselves are to improve
the bounds given by Theorems B and 9. The author would 1like to conjecturs,
in this connection, that the best bound in Theorem 3 will be Independent
of p.

5t111 another problem of interest 1s the length of an experliment
reguired to tell whether a glven copy of an unknmown strongly connected
{n, m, p}) machine 5 13 indiatingulshsble from a kmown (n, m, p)
machine T, This problem 1s akin to that faced by a meintenance man In
checking whether a given machine ia out of order, He knows what the
machine iz supposed to do, and he wishes to find out whether or not 1t does
do this. If not, it is s3sumed thet the machine is still a finite-state
machine, differing in some subtle way from the supposed machlne. A bound
rn on the number of statea of the machine is helpful in view of Theorem 2,
and is presumably derivable from the mown number of relays or other com-
ponenta of which the machine is made. Theorem 9 does glve a bound on the
length of the experiment, although 1t seems fantastlcally large. A more
reasonable experiment mipght be one which required the machine to undergo
every tranaition only a few timesa.

B8t111 other problems are suggested by permitting the inputa and
the cutputs of the machines to be k-tuplea of symbols rather than single
ones, The experimenters allowed in multiple experiments {see Flpure 2)
are already of thia type, and many devices bulilt out of relays or vacuum
tubes have k-tuples of binary digits as thelr ioputs or cutputs. 3Such
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machines can be combined more freely than aingle Input and output machines
to make larger machines. Certain inputa of each machine are connected to
the outputa of others, and other inputs and cutputs of the Individual
machines ape used as the inputs and outpute of the composite mochine. If
the k components of such a composite machine have n,, Oop «.. and  f
atatea each, the composite machine has

k
11:1 !
states, namely the k-tuplea of states of the component machinea. Such
composite machines are of particular interesat i all or most of these
states are distinguishable. Many problems exist in relation to the inveras
question of decomposition into such components. Glven a machine with n
states, under what conditions can 1% be represented as a combination of two
machines having n, and n, states, such that nn, = nt Under what
condlitlons ls the decomposltlon unlgue?

One way of descrlblng what englneers do in designing actual
automata 1s to aay that they start with an overmll description of a machine
and break 1t down successlvely into smaller and smaller machines, untll the
Individual relays or vacmm tubes are ultimately reached. The eff'iclency
of such a method might be determined by a theoretical investigation on
such decompositions. This might slso throw light on the validity with
which the psychiatrliats can hope to subdivide the mind Into ego, superego,
id, ete.

Anm-:mlgggﬂntu The somewhat overlapping work of Dr. D. A.
Huf'fman has already been mentloned, and should be acknowledged as an
antirely lndependent contribution. The writer would particularly llke to
acknowledge his Indebtedness te Dr. €. E. Shannon for several suggeations
which led to this work.



