The GOLDEN RATIO: PROPERTIES

ϕ has strange properties : multiplying it by itself, for instance, is exactly the same as adding one : $\phi^{2}=\phi+1$.

In other words, $\frac{1}{\phi}=\phi-1$.
Now, let's try to find out a number A such that $A=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{\ldots . .}}}}}$, in which the three little dots ... mean that you go on forever.

Raise it to the square, you'll get $A^{2}=1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{\ldots}}}}=1+A$.
Therefore, ${ }^{2}=A+1$: this is the first equation evoked above, whose solution is ϕ.
Likewise, it's easy to show that $\phi=\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}} \text {. }}$
Last, it's impossible to write ϕ as a ratio of two whole numbers, so mathematicians call it irrational. This can be proved by contradiction.

In a proof by contradiction, we assume the logical negation of the result we wish to prove, and then reach some kind of contradiction. That means the assumption is false.

Assume that ϕ is a rational number, meaning that there exists 2 whole numbers a and b so that $\phi=\frac{a}{b}$ and such that the fraction is shortened as much as possible. Therefore a and b can't be both even numbers.

From the properties of ϕ, we deduce $a^{2}=b^{2}+a b$, thus $a^{2}-b^{2}=a b$.
If a and b are both odd numbers, we can't have $a^{2}-b^{2}=a b$. If a is even and b is odd or if a is odd and b is even either.

We infer ϕ is not a rational number.

1. Prove that : $\phi^{2}=\phi+1$ then that $\frac{1}{\phi}=\phi-1$.
2. Explain why $A^{2}=1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{\ldots}}}}=1+A$, then justify that A is ϕ.
3. Find three different writing for ϕ.
4. In the proof by contradiction of the irrationality of ϕ : what would happen if a and b were both even numbers?
5. Explain :
a. "From the properties of ϕ, we deduce $a^{2}=b^{2}+a b$, thus $a^{2}-b^{2}=a b$. ."
b. "If a and b are both odd numbers, we can't have $a^{2}-b^{2}=a b$. If a is even and b is odd or if a is odd and b is even either."
6. Prove by contradiction that $\sqrt{2}$ is an irrational number as well.
