Calla lilies have 1 petal, iris have 3 petals, buttercups have 5 , clematis flowers have 8 , ragwort have 13, asters have 21 ... If you look in a garden, you will discover that for many flowers the number of petals is one of the pattern $1,1,2,3,5,8,13,21,34, \ldots$

Those numbers, called Fibonacci numbers, are also common in flower-heads. You'll see that the small florets are arranged in spirals running clockwise and anticlockwise. The number of spirals in each direction is a Fibonacci number. In this example, there are 34 clockwise spirals and 21 anticlockwise spirals.

It's not just flowers that contain Fibonacci spirals: the same pattern exists in pine scones, pineapple skin, broccoli florets and cauliflowers.

Fibonacci numbers also appear in leaves, branches and stalks. Plants often produce branches in a winding pattern as they grow. If you count upwards from a low branch to the next branch directly above it, you'll often find you've counted a Fibonacci number of branches.

Why do Fibonacci numbers keep cropping up Nature so often? It seems it's because they provide the best way for packing seeds, petals or leaves into a limited space without large gaps or awkward overlaps.

Task 1

Write the names of the flowers in the appropriate boxes:

Task 2

Draw on the circle besides a green arrow that shows a clockwise direction and a red arrow that shows an anticlockwise direction.

Task 3

Find the clue for the pattern of the sequence of numbers: $1,1,2,3,5,8,13,21,34, \ldots$

Complete it with the next five terms.

Task 4

Unscramble the word COFCINFABI to know the name of this Italian mathematician: \qquad

Task 5

Calculate ratios of consecutive terms from the sequence. What seems to be the value of this ratio as the numbers increase?

Task 6

Is the Fibonacci pattern systematically working in Nature? Give other examples and find counterexamples (personal research).

What could be an explanation for such a high frequency?

