
• Part I • 

YOU MIGHT BE 

SURPRISED! 





• 1 • 

A Diabolical 
Puzzle 

I BEL I EVE that the following puzzle may well be the most 
diabolical puzzle ever invented (and if it is, I proudly take credit for 
the invention). 

Two people-A and B-each make an offer, which is given below. 
The problem is to determine which of the offers is better. 

A ~ Oller: You are to make a statement. If the statement is true, 
you get exactly ten dollars. If the statement is false, then you get 
either less than ten or more than ten dollars, but not exactly ten 
dollars. 

B~ Oller: You are to make a statement. Regardless of whether the 
statement is true or false, you get more than ten dollars. 

Which of the two offers would you prefer? Most people decide 
that B's offer is better, since it guarantees more than ten dollars, 
whereas with A's offer, there is no certainty of winning more than 
ten. And it does seem that B's offer is better, but seeming is some­
times deceptive. In fact, I will make an offer of my own: If any of 
you are willing to make me A's offer, I'll pay you twenty dollars in 
advance. Anyone game? (Before taking me up on it, you had better 
read the rest of this chapter!) 
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FOREVER UNDECIDED 

I will not give the solution to the above problem until after first 
considering some simpler, related puzzles. 

In my book To Mock a Mockingbird, I presented the following 
puzzle: Suppose I offer two prizes-Prize I and Prize 2. You are to 
make a statement. If the statement is true, then I am to give you 
one of the two prizes (not saying which one). If your statement is 
false, then you get no prize. Obviously you can be sure of winning 
one of the two prizes by saying: "Two plus two is four," but suppose 
you have your heart set on Prize I; what statement could you make 
that would guarantee that you will get Prize I? 

The solution I gave is that you say: "You will not give me Prize 
2." If the statement is false, then what it says is not the case, which 
means that I will give you Prize 2. But I can't give you a prize for 
making a false statement, and so the statement can't be false. There­
fore, it must be true. Since it is true, then what it says is the case, 
which means that you will not get Prize 2. But since your statement 
was true, I must give you one of the two prizes, and since it is not 
Prize 2, it must be Prize 1. 

As we will see shortly, this little puzzle is closely related to Codel's 
famous Incompleteness Theorem. To find out how, let us consider 
a similar puzzle (actually, the same puzzle in a different guise). First, 
we go to the Island of Knights and Knaves (which plays a prominent 
role in this book) in which every inhabitant is either a knight or a 
knave. On this island knights make only true statements and knaves 
make only false ones. 

Suppose now that there are two clubs on this island-Club I and 
Club II. Only knights are allowed to be members of either club; 
knaves are rigorously excluded from both. Also, every knight is a 
member of one and only one of the two clubs. You visit the island 
one day and meet an unknown native who makes a statement from 
which you can deduce that he must be a member of Club I. What 
statement can he have made from which you can deduce this? 

In analogy with the last problem, the speaker could have said: "I 
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A DIABOLICAL PUZZLE 

am not a member of Club II." If the speaker were a knave, then he 
really couldn't be a member of Club II and would have made a true 
statement, which a knave cannot do. Therefore he must be a knight, 
and his statement must have been true; he really isn't a member of 
Club II. But since he is a knight, he must be a member of a club 
-so he belongs to Club I. 

The analogy should be obvious: Club I corresponds to those who 
make true statements and will get Prize 1; Club II corresponds to 
those who make true statements and will get Prize 2. 

These puzzles embody the essential idea behind Codel's famous 
sentence that asserts its non provability in a given mathematical 
system. Suppose we classify all the true sentences of the system {like 
the knights in the puzzle above} into two groups: Croup I consists 
of all sentences of the system which, though true, are not provable 
in the system; and Croup II consists of all the sentences which are 
not only true but are actually provable in the system. What Codel 
did was to construct a sentence that asserted that it was in Croup 
II-the sentence can be paraphrased, "I am not provable in the 
system." If the sentence were false, then what it says would not be 
the case, which would mean that it is provable in the system, which 
it cannot be {since all sentences provable in the system are true}. 
Hence the sentence must be true, and, as it says, it is not provable 
in the system. Thus Codel's sentence is true, but not provable in the 
system. 

We will have much to say about Codel sentences in the course 
of this book. For now, I wish to consider some more variants of the 
Prize Puzzle. 

1 . First Variant 

Again I offer two prizes-Prize 1 and Prize 2. If you make a true 
statement, I will give you at least one of the two prizes and possibly 
both. If you make a false statement, you get no prize. Suppose you 
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FOREVER UNDECIDED 

are ambitious and wish to win both prizes. What statement would 
you make? (Solutions appear at the ends of chapters unless otherwise 
specified. ) 

2 . Second Variant 

This time the rules change a bit: If you make a true statement, you 
get Prize 2; if you make a false statement, you don't get Prize 2 (you 
might or might not get Prize 1). Now what statement will win you 
Prize I? 

3 . A Perverse Variant 

Suppose that in a perverse frame of mind, 1 now tell you that if you 
make a false statement, you will get one of the two prizes, but if you 
make a true statement, you get no prize. What statement will win 
Prize I? 

4 . More on the Diabolical Puzzle 

Now let us return to the puzzle that opened this chapter: What was 
diabolical was my offer to pay you twenty dollars for making me A's 
offer, because if you took me up on it, 1 could win as much from 
you as 1 liked-say, a million dollars. Can you see how? 

SOLUTIONS 

1 • A statement that works is: "I will either get both prizes or no 
prize." If the statement is false, then what it says is not the case, 
which means that you will get exactly one prize. But you can't get 
a prize for a false statement. Therefore the statement must be true, 
and you really will get either both prizes or no prize. Since you did 
not make a false statement, which would result in no prize, you must 
get both prizes. 
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A DIABOLICAL PUZZLE 

2 . Just say: "I will get no prize." If the statement is true, then on 
the one hand you get no prize (as the statement says), but on the 
other hand, you get Prize 2 for having made a true statement. This 
is a clear contradiction, hence the statement must be false. Then, 
unlike what the statement says, you must get a prize. You can't get 
Prize 2 for a false statement, so you get Prize 1. 

3 . This time say: "I will get Prize 2." I leave the proof to the reader. 

4 . All I have to do is say: "You will neither pay me exactly ten 
dollars nor exactly one million dollars." If my statement is true, then 
on the one hand you will not pay me either exactly ten dollars or 
exactly a million dollars, but on the other hand you must pay me 
exactly ten dollars for having made a true statement. This is a 
contradiction, hence the statement can't be true and must be false. 
Since it is false, what it says is not the case, which means that you 
will pay me either exactly ten dollars or exactly a million dollars, but 
you can't pay me exactly ten dollars for a false statement, hence you 
must pay me a million dollars. 

Anyone still game? 
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Surprised? 

LET us now turn to the paradox at the surprise examination-a 
paradox that is quite relevant to the consideration of Codel in this 
book. We will look at it in the following form: On a Monday 
morning, a professor said to his class, "I will give you a surprise 
examination someday this week. It may be today, tomorrow, 
Wednesday, Thursday, or Friday at the latest. On the morning of 
the day of the examination, when you corne to class, you will not 
know that this is the day of the examination." 

Well, a logic student reasoned as follows: "Obviously 1 can't get 
the exam on the last day, Friday, because if 1 haven't gotten the 
exam by the end of Thursday's class, then on Friday morning I'll 
know that this is the day, and the exam won't be a surprise. This 
rules out Friday, so 1 now know that Thursday is the last possible 
day. And, if 1 don't get the exam by the end of Wednesday, then 
I'll know on Thursday morning that this must be the day (because 
1 have already ruled out Friday), hence it won't be a surprise. So 
Thursday is also ruled out." 

The student then ruled out Wednesday by the same argument, 
then Tuesday, and finally Monday, the day on which the professor 
was speaking. He concluded: "Therefore 1 can't get the exam at all; 
the professor cannot possibly fulfill his statement." Just then, the 
professor said: "Now 1 will give you your exam." The student was 
most surprised! 

What was wrong with the student's reasoning? 
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SURPRISED? 

Dozens of articles have been written about this famous prob­
lem, and uniform agreement about the correct analysis does not 
yet seem to have been reached. My own view is very briefly as 
follows: 

Let me put myself in the student's place. I claim that I could get 
a surprise examination on any day, even on Friday! Here is my 
reasoning: Suppose Friday morning comes and I haven't gotten 
the exam yet. What would I then believe? Assuming I believed the 
professor in the first place (and this assumption is necessary for the 
problem), could I consistently continue to believe the professor on 
Friday morning if I hadn't gotten the exam yet? I don't see how I 
could. I could certainly believe that I would get the exam today 
(Friday), but I couldn't believe that I'd get a surprise exam today. 
Therefore, how could I trust the professor's accuracy? Having doubts 
about the professor, I wouldn't know what to believe. Anything 
could happen as far as I'm concerned, and so it might well be that 
I could be surprised by getting the exam on Friday. 

Actually, the professor said two things: (l) You will get an exam 
someday this week; (2) You won't know on the morning of the exam 
that this is the day. I believe it is important that these two state­
ments should be separated. It could be that the professor was right 
in the first statement and wrong in the second. On Friday morning, 
I couldn't consistently believe that the professor was right about 
both statements, but I could consistently believe his first statement. 
However, if I do, then his second statement is wrong (since I will 
then believe that I will get the exam today). On the other hand, if 
I doubt the professor's first statement, then I won't know whether 
or not I'll get the exam today, which means that the professor's 
second statement is fulfilled (assuming he keeps his word and gives 
me the exam). So the surprising thing is that the professor's second 
statement is true or false depending respectively on whether I do not 
or do believe his first statement. Thus the one and only way the 
professor can be right is if I have doubts about him; if I doubt him, 
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FOREVER UNDECIDED 

that makes him right, whereas if I fully trust him, that makes him 
wrong! I don't know whether this curious point has been taken into 
consideration before. 

The One-Day Version. The complication of having more than one 
day is really irrelevant to the heart of the problem, hence the follow­
ing "one-day" version of the paradox has been proposed: The profes­
sor says to the student: "I will give you a surprise examination 
today." What is the student to make of that? 

An equivalent problem is this: Suppose a student asks his theology 
professor, "Does God really exist?" The professor answers, "God 
exists, but you will never believe that God exists." What is the 
student to make of that? We will see later that under certain very 
reasonable assumptions about the student's reasoning ability, he 
cannot believe the professor without becoming inconsistent. 

A problem even more pertinent to the heart of this book is this: 
Again, the student asks his theology professor whether God exists. 
This time the professor gives the following curious answer: "God 
exists if and only if you never believe that God exists." Equivalently, 
the professor is saying: "If God exists, then you will never believe 
that God exists, but if God doesn't exist, then you will believe that 
God does exist." What is the poor student to make of that? Can the 
student believe the professor without becoming inconsistent? Yes; 
it turns out that he can, but (again under certain reasonable assump­
tions about the student's reasoning ability, which will be explained 
in the course of this book) the student, who believes the professor, 
can remain consistent only if he does not know that he is consistent! 
In other words, if the student believes the professor and also believes 
in his own consistency, then he will become inconsistent. 

This paradox is closely related to Godel's remarkable Second 
Incompleteness Theorem-the theorem on the nonprovability of 
consistency. Godel considered some of the most comprehensive 
mathematical systems known to this day. These systems are certainly 
consistent (since everything provable in them is true), but the amaz-
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SURPRISED? 

ing thing is that these systems, despite their power (or, looked at 
another way, because of their power), are unable to prove their own 
consistency. We know the consistency of these systems only by 
methods that cannot be formalized in the systems themselves. 

This book will investigate these paradoxes and Codel's work. To 
help us in this pursuit (and to have some fun!), let's turn first to some 
logic puzzles and their relation to propositional logic. 
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• Part II • 

THE LOGIC OF LYING 
AND TRUTH TELLING 





• 3 • 

The Census 
Taker 

M U C H 0 F the action in this book will take place on the Island of 
Knights and Knaves, where, as we have seen, knights always make 
true statements, knaves always make false statements, and every 
inhabitant is either a knight or a knave. 

A fundamental fact about this island is that it is impossible for any 
inhabitant to claim to be a knave, because a knight would never lie 
and say he is a knave, and a knave would never truthfully admit to 
being a knave. 

The following four problems will introduce the logical connectives 
and, or, if-then, and if-and-only-if, which will be dealt with more 
formally in Chapter 6. 

McGREGOR'S VISIT 

The census taker Mr. McGregor once did some fieldwork on the 
Island of Knights and Knaves. On this island, women are also called 
knights and knaves. McGregor decided on this visit to interview 
married couples only. 

1 • (And) 

McGregor knocked on one door; the husband partly opened it and 
asked McGregor his business. "I am a census taker," replied Mc-
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FOREVER UNDECIDED 

Gregor, "and I need information about you and your wife. Which, 
if either, is a knight, and which, if either, is a knave?" 

"We are both knaves!" said the husband angrily as he slammed 
the'door. 

What type is the husband and what type is the wife? (Solution 
follows Problem 2.) 

2. (Or) 

At the next house, McGregor asked the husband: "Are both of you 
knaves?" The husband replied: "At least one of us is." 

What type is each? 

Solution to Problem 1. If the husband were a knight, he would 
never have claimed that he and his wife were both knaves. Therefore 
he must be a knave. Since he is a knave, his statement is false; so 
they are not both knaves. This means his wife must be a knight. 
Therefore he is a knave and she is a knight. 

Solution to Problem 2. If the husband were a knave, then it would 
be true that at least one of the two is a knave, hence a knave would 
have made a true statement, which cannot be. Therefore the hus­
band must be a knight. It then follows that his statement was true, 
which means that either he or his wife is a knave. Since he isn't a 
knave, then his wife is. And so the answer is the opposite of Problem 
I-he is a knight and she is a knave. 

The next problem is more startling than the preceding two (at 
least to those who haven't seen it before). It contains a theme that 
runs through some of the advanced problems that will crop up in 
later chapters. 

3 . (If-Then) 

The next home visited by McGregor proved more of a puzzler. The 
door was opened timidly by a rather shy man. After McGregor asked 

16 



THE CENSUS TAKER 

him to say something about himself and his wife, all the husband 
said was: "If 1 am a knight, then so is my wife." 

McGregor walked away none too pleased. "How can 1 tell any­
thing about either of them from such a noncommittal response?" he 
thought. He was about to write down "Husband and wife both 
unknown," when he suddenly recalled an old logic lesson from his 
Oxford undergraduate days. "Of course," he realized, "I can tell 
both their types!" 

What type is the husband and what type is the wife? 

Solution. Suppose the husband is a knight. Then it is true what he 
~ \, 

said-namely, that if he is a knight, so is his wife-and hence his 
wife must also be a knight. This proves that if the husband is a 
knight, so is his wife. Well, that's exactly what the husband said; he 
said that if he is a knight, then so is his wife. Therefore he made 
a true statement and so he must be a knight. We now know that 
he is a knight, and we have already proved that if he is a knight, so 
is his wife. Therefore the husband and wife must both be knights. 

The idea behind the last problem has more far-reaching ramifica­
tions than the reader might realize. Let us consider the following 
variant of the problem: Suppose you visit the island prospecting for 
gold. Before you start digging, you want to find out whether there 
really is any gold on the island. It is to be assumed that each native 
knows whether there is any gold on the island or not. Suppose a 
native says to you: "If 1 am a knight, then there is gold on the 
island." You can then justifiably conclude that the native must be 
a knight and that there must be gold on the island. The reasoning 
is the same as that of the solution to Problem 3: Suppose the native 
is a knight, then it is really true that if he is a knight, there is gold 
on the island and hence that there is gold on the island. This proves 
that if he is a knight, then there is gold on the island. Since he said' 
just that, he is a knight. Hence there is gold on the island. 

The solution to Problem 3 and its variant are special cases of 
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the following fact, which is sufficiently important to record as 
Theorem I. 

Theorem L Given any proposition p, suppose a native of the knight­
knave island says: "If I am a knight, then p." Then the native must 
be a knight and p must be true. 

The solution to Problem 3 is a special case of Theorem I, taking 
p to be the proposition that the native's wife is a knight. The variant 
of Problem 3 (the problem about the gold) is also a special case of 
Theorem I, taking p to be the proposition that there is gold on the 
island. 

It also follows from Theorem I that no inhabitant of the knight­
knave island can say: "If I'm a knight, then Santa Claus exists" 
(unless, of course, Santa Claus really does exist) . 

.. . (If-and-Only-If) 

When the census taker interviewed the fourth couple, the husband 
said: "My wife and I are of the same type; we are either both knights 
or both knaves." 

(The husband could have alternatively said: "I am a knight if and 
only if my wife is a knight." It comes to the same thing.) 

What can be deduced about the husband and what can be de­
duced about the wife? 

Solution. It cannot be determined whether the husband is a knight 
or a knave, but the wife's type can be determined as follows: 

If the wife were a knave, the husband could never claim that he 
is the same type as his wife, because that would be tantamount to 
claiming that he is a knave, which he cannot do. 

An alternative way of looking at the problem is this: The hus­
band is either a knight or a knave. If he is a knight, his statement 
is true, hence he and his wife really are of the same type, which 
means his wife is also a knight. On the other hand, if he is a knave, 
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THE CENSUS TAKER 

then his statement is false, hence he and his wife are of different 
types, which means that his wife, unlike her husband, is a knight. 
And so regardless of whether the husband is a knight or a knave, 
his wife must be a knight. (The husband's type here is "indeter­
minate"; he could be a knight who truthfully claimed to be like 
his wife, or he could be a knave who falsely claimed to be like 
his wife.) 

This problem is a special case of the following: Given any proposi­
tion p, suppose an inhabitant of the island says, "I am a knight if 
and only if p is true." What can be deduced? 

Two propositions are called equivalent if they are either both true 
or both false-in other words, if either one of them is true, so is the 
other. Two propositions are called inequivalent if they are not equiv­
alent-in other words, if one of them is true and the other is false. 
Now, the inhabitant has said: "I am a knight if and only if p is true." 
If we let k be the proposition that the inhabitant is a knight, then 
the inhabitant is claiming that k is equivalent to p. If he is a knight, 
then his claim is true, hence k really is equivalent to p; and since k 
is true (he is a knight), then p is also true. On the other hand, if he 
is a knave, then his claim is false; k is not really equivalent to p, but 
since k is false (he is not a knight), then again p must be true 
(because any proposition inequivalent to a false proposition is obvi­
ously true). And so we see that p must be true, but k is indetermi­
nate. Let us record this as Theorem II. 

Theorem 11 Given any proposition p, suppose an inhabitant says: 
"I am a knight if and only if p." Then p must be true, regardless 
of whether the inhabitant is a knight or a knave. 

Let us return to the problem of whether there is gold on the 
island. Suppose a native says: "I am a knight if and only if there is 
gold on the island." Then according to Theorem II (taking p to be 
the proposition that there is gold on the island), we see that there 
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must be gold on the island, though we cannot determine whether 
the native is a knight or a knave. 

We see, therefore, that if a native says: "If I am a knight, then 
there is gold on the island," according to Theorem I, we can infer 
both that he is a knight and that there is gold on the island. But if 
he instead says: "I am a knight if and only if there is gold on the 
island," then, according to Theorem II, all we can infer is that there 
is gold; we cannot determine whether the speaker is a knight or a 
knave. 

Theorem II is the basis of a famous puzzle invented by the 
philosopher Nelson Goodman. The puzzle can be rendered as fol­
lows: Suppose you go to the Island of Knights and Knaves and wish 
to find out whether or not there is gold on the island. You meet a 
native and you are allowed to ask him only one question, which must 
be answerable by yes or no. What question would you ask him? 

A question that works is: "Is it the case that you are a knight if 
and only if there is gold on the island?" If he answers yes, then 
according to Theorem II there is gold on the island. If he answers 
no, then there is no gold on the island (because he is denying that 
his being a knight is equivalent to there being gold on the island), 
which is tantamount to claiming that his being a knight is equivalent 
to there not being gold on the island, so again according to Theorem 
II there is no gold on the island. 

SOME RELATED PROBLEMS 

5 

What statement could a native make from which you could deduce 
that if he is a knight, then there is gold on the island, but if he is 
a knave, then there might or might not be gold on the island? 
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6 

What statement could a native make such that you could deduce 
that if there is gold on the island, then he must be a knight, but if 
there is no gold on the island, then he could be either a knight or 
a knave? 

7 

I once visited this island and asked a native: "Is there gold on this 
island?" All he said in reply was: "I have never claimed that there 
is gold on this island." Later, I found out that there was gold on the 
island. Was the native a knight or a knave? 

SOLUTIONS 

5 . There are many statements that would work. One such state­
ment is: "I am a knight and there is gold on the island." Another 
is: "There is gold on the island and there is silver on the island." (If 
the native is a knight, then of course there is gold-as well as silver 
-but if there is gold, the native needn't be a knight-there might 
not be any silver.) 

6 . One statement that works is: "Either I am a knight or there is 
gold on the island." The phrase "either-or" means at least one-and 
possibly both. And so if there is gold on the island, then it is certainly 
true that either the native is a knight or there is gold on the island. 
Therefore, if there is gold on the island, then the native's statement 
was true, which in turn implies that the native must be a knight. 
This proves that if there is gold on the island, then the native is a 
knight. 

On the other hand, the native could be a knight without there 
being any gold on the island, because if he is a knight then it is true 
that either he is a knight or there is gold on the island. 
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Another statement that works is: "Either there is gold on the 
island or silver on the island." 

7 . Suppose the native were a knave. Then his statement is false, 
which means that once he did claim that there is gold on the island. 
His claim must have been false (since he is a knave), which means 
that there is no gold on the island. But I told you that there was gold 
on the island. Hence he can't be a knave; he must be a knight. 
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In Search of 
Oona 

THE REI S a whole cluster of knight-knave islands in the South 
Pacific on which some of the inhabitants are half human and half 
bird. These bird-people fly just as well as birds and speak as fluently 
as humans. 

This is the story of a philosopher-a logician, in fact-who visited 
this cluster of islands and fell in love with a bird-girl named Oona. 
They were married. His marriage was a happy one, except that his 
wife was too flighty! For example, he would come home at night for 
dinner, but if it was a particularly lovely evening, Oona would have 
flown off to another island. So he would have to paddle around in 
his canoe from one island to another until he found Oona and 
brought her home. Whenever Oona landed on an island, the natives 
would all see her in the air and know she was landing. Once she was 
down, however, it would be very difficult to find her, so the first thing 
the husband did when he arrived on an island was to try to find out 
from the natives whether Oona had landed. What made it so diffi­
cult, of course, was that some of the natives were knaves and 
wouldn't tell the truth. Here are some of the incidents that befell 
him. 

1 

On one occasion, the husband came to an island in search of Oona 
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and met two natives, A and B. He asked them whether Dona had 
landed on the island. He got the following responses: 

A: If B and I are both knights, then Dona is on this island. 
B: If A and I are both knights, then Dona is on this island. 

Is Dona on this island? 

2 

Dn another occasion, two natives A and B made the following 
statements: 

A: If either of us is a knight, then Dona is on this island. 
B: That is true. 

Is Dona on this island? 

3 

I do not remember the details of the next incident too clearly. I 
know that the logician met two natives A and B and that A said: "B 
is a knight, and Dona is on this island." But I do not remember 
exactly what B said. He either said: "A is a knave, and Dona is not 
on this island." Dr he said: "A is a knave, and Dona is on this 
island." I wish I could remember which! At any rate, I do remember 
that the logician was able to determine whether or not Dona was on 
the island. Was she? 

4 

In the next incident, the logician came to a very small island with 
only six inhabitants. He interrogated each one, and curiously 
enough, they all said the same thing: "At least one knave on this 
island has seen Dona land here this evening." 

Did any native of this island see Dona land there that evening? 
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5 

In another curious incident, when the husband arrived on an island 
looking for Oona, he met five natives A, B, C, D, and E, who all 
guessed his purpose and grinned at meeting him. They made the 
following statements: 

A: Oona is on this island. 
B: Oona is not on this island! 
C: Oona was here yesterday. 
D: Oona is not here today, and she was not here yesterday. 
E: Either D is a knave or C is a knight. 

The logician thought about this for a while, but could get no­
where. 

"Won't one of you please make another statement?" the logician 
pleaded. At this point A said: "Either E is a knave or C is a knight." 

Is Oona on this island? 

SOLUTIONS 

1 . I shall content myself with briefer solutions than those I have 
formerly given. 

Suppose A and B are both knights. Then the common statement 
they make is true, from which it in turn follows that Oona is on the 
island. So if they are both knights, then Oona is on the island. This 
is what they said, so they are both knights. Hence Oona is on the 
island. 

2 . If either one is a knight, then the statement he made is true, from 
which it in turn follows that Oona is on the island. Therefore, if 
either one is a knight, Oona is on the island. Thus the statement 
they both made is true, hence both are knights, so surely at least one 
is a knight. From this and the truth of the statement they made, it 
follows that Oona is on the island. 
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3 . This is an example of what I call a metapuzzle: You are not told 
what B said, but you are told that from what A and B said, the 
logician was able to determine whether Oona was on the island. 
(If I had not told you that, then you couldn't possibly solve the 
problem!) 

I will first show you that if B had said: "A is a knave, and Oona 
is not on this island," then the logician couldn't possibly have solved 
the problem. So suppose that B had said that. Now, A couldn't 
possibly be a knight, for if he were, then B would be a knight (as 
A said), which would make A a knave (as B said). Therefore A is 
definitely a knave. But now it could either be that B is a knight and 
Oona isn't on the island, or that B is a knave and Oona is on the 
island, and there is no way to tell which. So if B had said that, the 
logician couldn't have known whether Oona was on the island. But 
we are given that the logician did know, hence B didn't say that. He 
must have said: "A is a knave and Oona is on this island." Now let's 
see what happens. 

A must be a knave for the same reason as before. If Oona is on 
the island, we get the following contradiction: It is then true that 
A is a knave and Oona is on the island, hence B made a true 
statement, which makes B a knight. But then A made a true state­
ment in claiming that B is a knight and Oona is on the island, 
contrary to the fact that A is a knave! The only way out of the 
contradiction is that Oona is not on the island. So Oona is not on 
this island (and, of course, A and B are both knaves). 

4 . Since all six natives said the same thing, then they are either all 
knights or all knaves (all knights, if what they said is true, and all 
knaves otherwise). Suppose they were all knights. Then it would be 
true that at least one knave on the island had seen Oona land, but 
this would be impossible, since none of them are knaves. Therefore 
they must all be knaves. Hence what they said is false, which means 
that no knave on the island saw Oona land that evening. But since 
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all the natives are knaves, then no native at all saw Dona land that 
evening. 

5 . Vve will show that if A is a knave, we get a contradiction: 
Suppose A is a knave. Then his second statement was false, hence 
E must be a knight and C must be a knave. Since E is a knight, his 
statement is true, hence either D is a knave or C is a knight. But 
C isn't a knight, so D must be a knave. Hence D's statement was 
false, so either Dona is here today or she was here yesterday. But 
Dona was not here yesterday (because C said she was and C is a 
knave), hence she is here today. But this makes A's first statement 
true, contrary to the assumption that A is a knave! Then A can't be 
a knave; he must be a knight. Therefore A's first statement was true, 
so Dona is on this island. 
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An Interplanetary 
Tangle 

ON G ANY M E D E-a satellite of Jupiter-there is a club known as 
the Martian-Venusian Club. All the members are either from Mars 
or from Venus, although visitors are sometimes allowed. An earth­
ling is unable to distinguish Martians from Venusians by their ap­
pearance. Also, earthlings cannot distinguish either Martian or 
Venusian males from females, since they dress alike. Logicians, 
however, have an advantage, since the Venusian women always tell 
the truth and the Venusian men always lie. The Martians are the 
opposite; the Martian men tell the truth and the Martian women 
always lie. 

One day Oona and her logician-husband visited Ganymede and 
were told about this club. "I'll bet you I can tell the men from the 
women and the Martians from the Venusians," said the husband 
proudly to his wife. 

"How?" asked Oona. 
"We'll visit the club tonight, which is visitors' night, and I'll 

show you!" said the husband (whose name, by the way, was 
George). 

1 

They visited the club that night. "Now, let's see what you can do," 
said Oona somewhat skeptically. "That member over there. Can you 
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tell whether he or she is male or female?" George then went over 
to the member and asked him or her a single question answerable 
by yes or no. The member answered, and George then determined 
whether the member was male or female, though he could not 
determine whether the member was from Mars or Venus. 

What question could it have been? 

2 

"Very clever!" said Oona, after George had explained the solution. 
"Now, suppose that instead of wanting to find out whether the 
member was male or female, you had wanted to find out whether 
he or she was from Mars or Venus. Could you have done that by 
asking only one yes-no question?" 

"Of course!" said George. "Don't you see how?" 
Oona thought about it for a bit and suddenly saw how. How? 

3 

"If you are really clever," said Oona, "you should be able to find out 
in only one question whether a given member is male or female and 
where the member is from. Let's see you do both things at once 
using only one yes-no question!" 

"Nobody is that clever!" replied George. Why did George say 
that? (This is essentially a repetition of the last puzzle of Chapter 
2 of my book To Mock a Mockingbird.) 

4 

Just then a member walked by and made a statement from which 
George and Oona (who was by now getting the hang of things) could 
deduce that the member must be a Martian female. What state­
ment could it have been? 
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5 

The next member who walked by made a statement from which 
George and Oona could deduce that the member must be a Venu­
sian female. What statement could it have been? 

6 

What statement could be made by either a Martian male, a Martian 
female, a Venusian male, or a Venusian female? 

News soon spread through the club of George and Oona's clever­
ness in applying logic to determine the sex and/or race of various 
members. The owner of the club, an American entrepreneur named 
Fetter, came over to George and Oona's table to congratulate them. 
"I would like to try you on still other members," said Fetter, "and 
see what you can do." 

7 

Just then two members walked by. "Come join us," said Fetter, who 
introduced them as Ork and Bog. George asked them to tell him 
something about themselves, and the two made the following state­
ments. 

ORK: Bog is from Venus. 
BOG: Ork is from Mars. 
ORK: Bog is male. 
BOG: Ork is female. 

From this information, George and Oona could successively iden­
tify both the sex and the race of each of them. What is Ork and what 
is Bog? 
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8 

"You know," said Fetter, after Ork and Bog had left, "that Martians 
and Venusians often intermarry, and we have several mixed couples 
in this club. Here is a couple approaching us now. Let's see if you 
can tell whether or not it is a mixed couple." 

I don't remember the couple's first names, so I will simply call 
them A and B. 

"Where are you from?" Oona asked A. 
"From Mars," was the reply. 
"That's not true!" said B. 
Is this a mixed couple or not? 

9 

"Here comes another couple," said Fetter. "Again I won't tell you 
whether they are a mixed couple or not. Let's see if you can figure 
out which one is the husband." 

We will call the two A and B. George asked: "Are you both from 
the same planet?" Here are their replies. 

A: We are both from Venus. 
B: That is not true! 

Which one is the husband? 

10 

"Here is another couple," said Fetter. "Again, I won't tell you 
whether it is a mixed couple or not. Let's see what will happen!" 

This time I happen to remember their first names-they were Jal 
and Tork. 

"Where are you each from?" asked George. 
"My spouse is from Mars," replied Tork. 
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"We are both from Mars," said Jal. 
This enabled George and Oona to classify both of them com­

pletely. Which is the husband and which is the wife, and which 
planet is' each of them from? 

SOLUTIONS 

1 . The simplest question that works is: "Are you Martian?" Sup­
pose you get the answer yes. The speaker is either telling the truth 
or lying. If the former, then the speaker is really Martian, and being 
a truth-telling Martian, must be male. If the speaker is lying, then 
the speaker is really Venusian, hence is a lying Venusian, hence is 
again male. So in either case, a yes answer indicates that the speaker 
is male. A similar analysis (which I leave to the reader) shows that 
a no answer indicates that the speaker is female. 

Of course the question "Are you Venusian?" works equally well; 
a yes answer then indicates that the speaker is female, and a no 
answer indicates male. 

2 . The question, "Are you male?" works. (I leave the verification 
to the reader.) Alternatively the question, "Are you female?" works 
as well. 

3 . The reason that it is impossible to design a yes-no question that 
will definitely determine whether a given member is male or female 
and whether the member is Martian or Venusian is that there are 
four possibilities for the member-a Martian male, a Martian fe­
male, a Venusian male, a Venusian female-but there are only two 
possible responses to the question: yes or no. And so with only 
two possible responses, one cannot determine which of four possibili­
ties holds. 

4· A simple statement that would work is: "I am a Venusian male." 
Obviously the statement can't be true, or we would have the contra-

32 



AN INTERPLANETARY TANGLE 

diction of a Venusian male making a true statement. Hence the 
statement is false, which means that the speaker is not a Venusian 
male. Since the statement is false, the speaker must then be a 
Martian female. 

5 . This is a bit trickier: One statement that works is: "I am either 
female or Venusian." (Note: Remember that either-or means at least 
one and possibly both; it does not mean exactly one.) 

If the statement is false, then the speaker is neither female nor 
Venusian, hence must be a male Martian. But a male Martian does 
not make false statements, and so we get a contradiction. This proves 
that the statement must be true, hence the speaker must be either 
female or Venusian and possibly both. However, if she is female, she 
must also be Venusian, and if Venusian, also female, because truth­
telling females are Venusian and truth-telling Venusians are female. 
Therefore the speaker must be both Venusian and female. 

Incidentally, if the speaker had made the stronger statement, "I 
am female and Venusian," it would be impossible to determine 
either the sex or the race of the speaker (all that could be inferred 
is that the speaker is not a Martian male). 

6 . One such statement is, "I am either a Martian male or a Venu­
sian female"--or, even more simply, "I always tell the truth." Any 
liar or truth teller could say that. 

7 . Suppose Ork told the truth. Then Bog would be both male and 
Venusian, hence Bog must have lied. Suppose, on the other hand, 
that Ork lied. Then Bog is neither male nor Venusian, hence Bog 
must be a Martian female, so again Bog must have lied. This proves 
that regardless of whether Ork told the truth or not, Bog definitely 
lied. 

Since Bog lied, then Ork is neither from Mars nor female, hence 
Ork must be a Venusian male. Therefore Ork also lied, which means 
that Bog must be a Martian female. And so the solution is that Ork 
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is a Venusian male and Bog is a Martian female (and all four 
statements were lies). 

8 . Since A claimed to be from Mars, then A must be male (as we 
saw in the solution of Problem 1), and hence B must be female. If 
A is truthful, then A really is from Mars, B lied, and being a lying 
female is also from Mars. If A lied, A is really from Venus, B told 
the truth, and being female is also from Venus. Therefore this is not 
a mixed couple; they are both from the same planet. 

9 . If A's statement is true, then both are from Venus, hence A is 
from Venus and A must be female. Suppose A's statement is false. 
Then at least one of them is from Mars. If A is from Mars, A must 
be female (since A's statement is false). If B is from Mars, B must 
be male (since B's statement is true), hence again, A must be female. 
And so A is the wife and B is the husband. 

10 . Suppose that Tal told the truth. Then the two really are both 
from Mars, hence Tork is from Mars and Tork's statement that Tal 
is from Mars was true. We thus have the impossibility of a couple 
from the same planet both telling the truth. This cannot be, hence 
Tal must have lied. Therefore at least one of them is from Venus. 

If Tal is from Mars, then it must be that Tork is the one from 
Venus. But then Tork told the truth in claiming that Tal is from 
Mars so Tork must be female, hence Tal must be male, and we have 
the impossibility of a male Martian making a false statement. There­
fore Tal cannot be from Mars; Tal must be from Venus. Since Tallied 
and is from Venus, Tal must be male. Also, since Tal is not from Mars, 
Tork lied. Hence Tork is a lying female, and thus from Mars. 

In summary, Tal is a Venusian male and Tork is a Martian female. 

34 



• Part III • 

KNIGHTS, KNAVES, 
AND PROPOSITIONAL 

LOGIC 





• 6 • 

A Bit of 
Propositional 

Logic 

THE L I A R-truth teller puzzles of the last three chapters take on 
an added significance when looked at in terms of the subject known 
as .pro.positionallogic (as we will see in the next chapter). In this 
chapter we will go over a few of the basics-the logical connectives, 
truth tables, and tautologies. Readers already familiar with these 
concepts might pass right on to the next chapter (or perhaps just 
skim this one as a refresher). 

THE LOGICAL CONNECTIVES 

Propositional logic, like algebra, has its own symbolism, which is 
relatively easy to learn. In algebra, the letters x, y, z stand for 
unspecified numbers; in propositional logic, we use the letters p, q, 
r, s (sometimes with subscripts) to stand for unspecified propositions. 

Propositions can be combined by using the so-called logical con­
nectives. The principal ones are: 

(1) '" (not) 
(2) & (and) 
(3) v (or) 
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(4) :::> (if-then) 
(5) = (if-and-only-if) 

An explanation of these follows. 

(l) Negation. For any proposition p, by ....... p we mean the opposite 
or contrary of p. We read ....... p as "it is not the case that p"; or, more 
briefly, "not p." The proposition ....... p is called the negation of p; it 
is true if p is false and it is false if p is true. We can summarize these 
two facts in the following table, which is called the truth table for 
negation. In this table (as in all the tables that follow), we will use 
the letter "T" to stand for truth and "F" to stand for falsehood. 

m,....,p 

T F 
F T 

The first line of the truth table says that if p has the value T (i.e., 
if p is true), then ....... p has the value F. The second line says that if 
p has the value F, then ....... p has the value T. We can also write this 
as follows: 

(2) Conjunction. For any propositions p and q, the proposition that 
p and q are both true is written "p&q" (sometimes "pAq"). We call 
p&q the conjunction of p and q. It is true if p and q are both true, 
but false if either one of them is false. We thus have the following 
four laws of conjunction: 

T&T=T 
T&F=F 
F&T=F 
F&F=F 
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Thus the following is the truth table for conjunction: 

p q p&q 

T T T 
T F F 
F T F 
F F F 

(3) Disjunction. For any propositions p and q, we let pvq be the 
proposition that at least one of the propositions p or q is true. We 
read pvq as "either p or q-and possibly both." (There is another 
sense of "or," namely, exactly one, but this is not the sense in 
which we will use the word "or." If p and q both happen to be 
true, the proposition pvq is taken to be true.) The proposition 
pvq is called the disjunction of p and q. Disjunction has the fol­
lowing truth table: 

p q pvq 

T T T 
T F T 
F T T 
F F F 

We see that pvq is false only in the fourth case-when p and q 
are both false. 

(4) If-Then. For any propositions p and q, we write p::>q to mean 
that either p is false or p and q are both true-in other words, if p 
is true, so is q. We sometimes read p::>q as "if p, then q," or "p 
implies q," or "it is not the case that p is true and q is false." We 
call p::>q the conditional of p and q. For the conditional, we have the 
following truth table. 
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P q p:::lC} 

T T T 
T F F 
F T T 
F F T 

We note that p:>q is false only in the second line-the case when 
p is true and q is false. This perhaps needs some explanation: p:>q 
is the proposition that it is not the case that p is true and q is false. 
The only way that it can be false is if it is the case that p is true 
and q is false. 

(5) If-and-Only-Il Finally, we let p=q be the proposition that p 
and q are either both true or both false, or, what is the same thing, 
that if either one of them is true, so is the other. We read p=q as 
"p is true if and only if q is true," or "p and q are equivalent." (We 
recall that two propositions are called equivalent if they are either 
both true or both false.) The proposition p=q is sometimes called 
the biconditional of p and q. Here is its truth table. 

p q p=q 

T T T 
T F F 
F T F 
F F T 

Parentheses. We need to use parentheses to avoid ambiguity. For 
example, suppose I write p&qvr. The reader cannot tell whether I 
mean that p is true and either q or r is true, or whether I mean that 
either p and q are both true or r is true. If I mean the former, I should 
write p&(qvr); if I mean the latter, I should write (p&q)vr. 

Compound Truth Tables. By the truth value of a proposition is 
meant its truth or falsity-that is T, if p is true, and F, if p is false. 
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Thus the propositions 2 + 2 = 4 and London is the capital of 
England, though different propositions, have the same truth value 
-namely, T. 

Consider now two propositions p and q. If we know the truth 
value of p and the truth value of q, then we can determine the truth 
values of p&q, pvq, p:>q, and p=q-and also the truth value of 
......... p (as well as the truth value of ......... q). It therefore follows that given 
any combination of p and q (that is, any proposition expressible in 
terms of p and q, using the logical connectives), we can determine 
the truth value of this combination once we are given the truth 
values of p and q. For example, suppose A is the proposition 
(p=(q&p)):::>( ......... p:>q). Given the truth values of p and q, we can 
successively find the values of q&p, p=(q&p), ......... p, ( ......... p:>q) , and 
finally (p=(q&p)):::>( ......... p:::>q). There are four possible distributions of 
truth values for p and q, and in each of the four cases we can 
determine the truth value of A. We can do this systematically by 
constructing the following table: 

q q&p p-(q&p) p - ,...., ,...., - ,...., - -

T T T F T T 
F F F F T T 
T F T T T T 
F F T T F F 

We see then that A is true in the first three cases and false in the 
fourth. 

Let us consider another example: Let B = (p:::>q):::>( ......... q:::> ......... p), and 
let us make a truth table for B. 

p q ,....,p ,....,q p:::>q q:::> p (p:::>q):::>( q:::> p) ,...., ,...., ,...., ,...., 

T T F F T T T 
T F F T F F T 
F T T F T T T 
F F T T T T T 
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We see that B is true in all four cases, and is hence an example 
of what is called a tautology. 

We can also construct a truth table for a combination of three 
propositional unknowns-p, q, and r-but now there are eight 
cases to consider (because there are four distributions of T's 
and F's to p and q, and with each of these four distributions 
there are two possibilities for r). For example, suppose C is the 
expression (p&( q:Jr )):J( r&~p). It would have the following truth 
table: 

q r q:Jr p&( q:Jr) ,....., p r& p (p&(q:Jr)):J(r& p) ,....., ,....., 

T T T T F F F 
T F F F F F F 
F T T T F F F 
F F T T F F F 
T T T F T T F 
T F F F T F F 
F T T F T T F 
F F T F T F F 

We will see that C is false in all eight cases; it is the very opposite 
of a tautology and is an example of what is called a contradiction. 
There are no propositions p, q, and r such that (p&(q:Jr)):J(r&~p) 
is true. (We could have seen this without a truth table by using 
common sense. Suppose p&(q:Jr) is true. Then how could (r&~p) 
be true, since ~p is false?) 

If we make a truth table for an expression in four unknowns-say, 
p, q, r, and s-there are sixteen cases to consider, and so the truth 
table will have sixteen lines. In general, for any positive whole num­
ber n, a truth table for an expression in n unknowns must have 
2n lines (each time we add an unknown, the number of lines 
doubles). 
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TAUTOLOGIES 

A proposition is called a tautology if it can be established purely on 
the basis of the truth table rules for the logical connectives. For 
example, suppose that one person says that it will rain tomorrow and 
a second person says that it won't. We can hardly expect to tell 
which one is right by using a truth table. We must wait till tomorrow 
and then observe the weather. But suppose a third person says today: 
"Either it will rain tomorrow or it won't." Now, that's what I would 
call a safe prediction! Without waiting for tomorrow, and making 
an observation, we know by pure reason that he must be right. His 
assertion is of the form pv~p (where p is the proposition that it will 
rain tomorrow), and for every proposition p, the proposition pv~p 
must be true (as a truth table will easily show). 

The more usual definition of tautology involves the notion of a 
formula. By a formula is meant any expression built from the sym­
bols ~, &, v, :::J, _ and the propositional variables p, q, r, ... 
parenthesized correctly. Here are the precise rules for constructing 
formulas: 

(1) Any propositional variable standing alone is a formula. 
(2) Given any formulas X and Y already constructed, the expres­

sions (X&Y), (XvY), (X:::JY), or (X=Y) are again formulas, and so 
is the expression ~ X. 

It is to be understood that no expression is a formula unless it is 
constructed according to rules (1) and (2) above. 

When displaying a formula standing alone, we can dispense with 
the outermost parentheses without incurring any ambiguity-for 
example, when we say "the formula p:::Jq," we mean "the formula 
(p:::Jq)." 

A formula in itself is neither true nor false, but only becomes true 
or false when we interpret the propositional variables as standing for 
definite propositions. For example, if I asked: "Is the formula (p&q) 
true?", you would probably (and rightly) reply: "It depends on what 
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propositions the letters 'p' and 'q' represent." And so a formula such 
as "p&q" is sometimes true and sometimes false. On the other hand, 
a formula such as "pv ......... p" is always true (it is true whatever proposi­
tion is represented by the letter "p") and is accordingly called a 
tautological formula. Thus a tautological formula is by definition a 
formula that is always true-or what is the same thing, a truth table 
for the formula will have only T's in the last column. We can then 
define a proposition to be a tautology if it is expressed by some 
tautological formula under some interpretation of the propositional 
variables. (For example, the proposition that it is either raining or 
not raining is expressed by the formula pv ......... p, if we interpret "p" 
to be the proposition that it is raining.) 

Logical Implication and Equivalence. Given any two propositions 
X and Y, we say that X logically implies Y, or that Y is a logical 
consequence of X if X:JY is a tautology. We say that X is logically 
equivalent to Y if X=Y is a tautology; or, what is the same thing, 
if X logically implies Y and Y logically implies X. 

SOME TAUTOLOGIES 

The truth table is a systematic method of verifying tautologies, but 
many tautologies can be more quickly recognized by using a little 
common sense. Here are some examples: 

This says that if p implies q, and if q implies r, then p implies r. 
This is surely self-evident (but can, of course, be verified by a truth 
table). This tautology has a name-it is called a syllogism. 

(2) (p&(p:Jq)):Jq. 
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This says that if p is true, and if p implies q, then q is true. This 
is sometimes paraphrased: "Anything implied by a true proposition 
is true." 

This says that if p implies a false proposition, then p must be false. 

(4) ((p~)&(p:>-q)):J-p. 

This says that if p implies q and also p implies not q, then p must 
be false. 

This principle is known as reductio ad absurdum. To show that 
p is true, it suffices to show that -p implies some proposition q as 
well as its negation -q. 

(6) ((pvq)&-p)~. 

This is a familiar principle of logic: If at least one of p or q is true, 
and if p is false, then it must be q that is true. 

(7) ((pvq)&((p:Jr)&(q:Jr))):Jr. 

This is another familiar principle known as proof by cases. Sup­
pose pvq is true. Suppose also that p implies r and that q implies r. 
Then r must be true (regardless of whether it is p or q that is true 
-or both). 

The reader with little experience in propositional logic should 
benefit from the following exercise. 

Exercise 1. State which of the following are tautologies. 

(a) (p:>q):J( q:Jp) 
(b) (p:>q):J( -p:>-q) 
(c) (p~):J(-q:J-p) 
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(d) (p=q)~(~p=~q) 
(e) ~(p~~p) 
(f) ~(p=~p) 
(g) ~(p&q)~( ~p&~q) 
(h) ~(pvq)~( ~pv~q) 
(i) (~pv~q)~~(pvq) 
(j) ~(p&q)-( ~pv~q) 
(k) ~(pvq)=( ~p&~q) 
(1) (q-r)~((~q)=(p~r)) 
(m) (p_(p&q))_(q_(pvq)) 

Answers. (a) No, (b) No, (c) Yes, (d) Yes, (e) No! (f) Yes, (g) No, 
(h) Yes, (i) No, (j) Yes, (k) Yes, (1) Yes, (m) Yes (both p_(p&q) and 
(q=(pvq)) are equivalent to p~). 

Concerning (e), many beginners think that no proposition p can 
imply its negation. This is not so! If p happens to be false, then 
~p is true, hence in that case, ~~p is true. However, no proposi­
tion can be equivalent to its own negation, and so (f) is indeed a 
tautology. 

Discussion. The significance of tautologies is that they are not only 
true, but logically certain. No scientific experiments are necessary to 
establish their truth-they can be verified on the basis of pure 
reason. 

One can alternatively characterize tautologies without appeal to 
the notion of formulas. Let us define a state of affairs as any classifica­
tion of all propositions into two categories-true propositions and 
false propositions-subject to the restriction that the classification 
must obey the truth table conditions for the logical connectives (for 
example, we may not classify pvq as true if p and q are both classified 
as false). A tautology, then, is a proposition which is true in every 
possible state of affairs. 

This is related to Leibniz's notion of other possible worlds. Leib­
niz claimed that of all possible worlds, this one was the best. Frankly, 
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I have no idea whether he was right or wrong in this, but the 
interesting thing is that he considered other possible worlds. Out of 
this, a whole branch of philosophical logic known as possible world 
semantics has developed in recent years-notably by the philosopher 
Saul Kripke-which we will discuss in a later chapter. Given any 
possible world, the set of all propositions that are true for that world, 
together with the set of all propositions that are false for that world, 
constitute the state of affairs holding for that world. A tautology, 
then, is true, not only for this world, but for all possible worlds. The 
physical sciences are interested in the state of affairs that holds for 
the actual world, whereas pure mathematics and logic study all 
possible states of affairs. 
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Knights, Knaves, 
and Propositional 

Logic 

KNIGHTS AND KNAVES REVISITED 

We can now introduce a simple but basic translation device whereby 
a host of problems about liars and truth tellers can be reduced to 
problems in propositional logic. This device will be crucial in several 
subsequent chapters. 

Let us return to the Island of Knights and Knaves. Given a native 
P, let k be the proposition that P is a knight. Now, suppose that P 
asserts a proposition X. In general we do not know whether P is a 
knight or a knave, nor whether X is true or false. But this much we 
do know: If P is a knight, then X is true, and conversely, if X is true, 
then P is a knight (because knaves never make true statements). And 
so we know that P is a knight if and only if X is true; in other words, 
we know that the proposition k=X is a true proposition. And so we 
translate "P asserts X" as "k=X." 

Sometimes we have more than two natives involved-for exam­
ple, suppose we have two natives PI and P2. We let kI be the 
proposition that PI is a knight; we let k2 be the proposition that P2 
is a knight. If a third native P3 is involved, we let k3 be the propos i-
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tion that P3 is a knight, and so forth, for all natives involved. We 
then translate "PI asserts X" as "kI=X"; we translate "P2 asserts 
X" as "k2=X"; and so on. 

Let us now look at the first problem in Chapter 3 (page 15). There 
are two natives PI and P2 (the husband and the wife) involved. We 
are given that PI asserts that PI and P2 are both knaves; we are to 
determine the types of PI and P2. Now, kI is the proposition that 
PI is a knight, hence ......,kI is equivalent to the proposition that PI 
is a knave (since each inhabitant is a knight or a knave, but not both). 
Similarly, ......,k2 is the proposition that P2 is a knave. Hence the 
proposition that PI and P2 are both knaves is ......,kI&......,k2. PI is 
asserting the proposition ......,kI&......,k2. Then, using our translation 
device, the reality of the situation is that kI=(......,kI&......,k2) is true. 
So the problem can be posed in the following purely propositional 
terms: Given two propositions kI and k2 such that kI=(......,kI&......,k2) 
is true, what are the truth values of kI and k2? If we make a truth 
table, we car hat the only case in which kI=( ......,kI &......,k2) comes 
out true is wrtelt kI is false and k2 is true. (We also saw this by 
common-sense reasoning when we solved the problem in Chapter 3.) 
The upshot is that the proposition (kI=(......,kI&......,k2))::>......,kI is a 
tautology, and so is the proposition (kI=( ......,kI &......,k2))::>k2. 

The entire mathematical content of this problem is that for any 
propositions kI and k2' the following proposition is a tautology: 
(kI=( ......,kI&......,k2))::>( ......,kI&k2)· 

The reader might note as well that the converse proposition 
(......,kI &k2)::>(kI=( ......,kI &......,k2) )isalsoa tauto~ogy,hencetheproposition 
kI=(......,kI&......,k2) is logically equivalent to the proposition ......,kI&k2. 

Now let us look at the second problem in Chapter 3. Here PI 
asserts that either PI or P2 is a knave. We concluded that PI is a 
knight and P2 is a knave. The mathematical content of this fact is 
that the proposition (kI=(......,kIV......,k2))::>(kI&......,k2) is a tautology. 

The reader might note in passing that the converse is also true, 
and hence that the proposition (kI=(......,kIV......,k2))-(kI&......,k2) is a 
tautology. 
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The translation of Problem 3 is of particular theoretical signifi­
cance; in fact, let us consider it in the more general form of Theorem 
I, Chapter 3 (page 18). We have a native P claiming about a certain 
proposition q that if P is a knight, then q is true (q could be the 
proposition that P's wife is a knight, or that there is gold on the 
island, or any proposition whatsoever). We let k be the proposition 
that P is a knight. Thus P is claiming the proposition k:>q, and 
so the reality of the situation is that k=(k:>q) is true. From this we 
are to determine the truth value of k and q. As we have seen, k 
and q must both be true. Thus the mathematical content of Theo­
rem I, Chapter 3, is that (k=(k:>q)):J(k&q) is a tautology. Of 
course this fact is not really dependent on the particular nature 
of the proposition k; for any proposition p and q, the proposi­
tion (p=(p:Jq)):J(p&q) is a tautology. The converse proposition, 
(p&q):J(p=(p:>q)), is also a tautology, because if p&q is true, p and 
q are both true, then p:>q must be true, hence p=(p:>q) must be 
true. And so the following is a tautology: (p=(p:>q)) =(p&q). 

Let us now look at Problem 4, or rather Theorem II, in Chapter 
3. Here we have P claiming that P is a knight if and only if q. Again 
we let k be the proposition that P is a knight, and so P is claiming 
the proposition k=q. Therefore we know that k=(k=q) is true. 
From this we can determine that q must be true, and so the essential 
mathematical content of Theorem II, Chapter 3, is that the follow­
ing is a tautology: (k=(k=q)):>q. 

This tautology is what I would call the Goodman tautology, since 
it arises from Nelson Goodman's problem, which is discussed in 
Chapter 3. 

Exercise 1. Let us consider three inhabitants Ph P2, and P3 of the 
knight-knave island. Suppose PI and P2 make the following state­
ments. 

PI: P2 and P3 are both knights. 
P2: PI is a knave and P3 is a knight. 
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Exercise 2. (a) Is the following a tautology? 

(b) How does this relate to Exercise I? 

Exercise 3. Show that the proposition P3 is a logical consequence 
of the following two propositions: 

(1) PI="'P2 
(2) P2=(PI="'P3) 

Exercise 4. Suppose Ph P2, and P3 are three inhabitants of the 
knight-knave island, and that PI and P2 make the following 
statements: 

PI: P2 is a ~nave. 
P2: PI and P3 are of different types. 

(a) Is P3 a knight or a knave? . 
(b) How does this relate to Exercise 3? 

THE OONA PROBLEMS 

Many of the Oona problems of Chapter 4 can also be solved by truth 
tables. Consider, for example, the first one (page 23): We have two 
natives PI and P2; PI asserts that if PI and P2 are both knights, then 
Oona is on the island. P2 asserts the same thing. We let 0 be the 
proposition that Oona is on the island. Using our translation device, 
we know that the following two propositions are true. 

(1) kI=((kI&k2):JO) 
(2) k2=((kI&k2):JO) 
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We are to determine whether 0 is true or false. Well, if you 
make a truth table for the conjunction of (1) and (2)-i.e., for 
(kl=((kl&k2):)0))&(k2=((kl&k2):)0)), you will see that the last 
column contains T's in those and only those places in which 0 has 
the value T. Therefore 0 must be true. 

Exercise 5. Suppose the husband goes looking for Oona and meets 
two natives A and B on an island and they make the following 
statements: 

A: If B is a knight, then Oona is not on this island. 
B: If A is a knave, then Oona is not on this island. 

Is Oona on this island? 

Exercise 6. On another island, two natives A and B make the 
following statements: 

A: If either of us is a knight, then Oona is on this island. 
B: If either of us is a knave, then Oona is on this island. 

Is Oona on this island? 

Exercise 7. On another island, two natives A and B make the 
following statements. 

A: If I am a knight and B is a knave, then Oona is on this 
island. 
B: That is not true! 

Is Oona on this island? 

MARTIANS AND VEN\JSIANS 
REVISITED 

Many of the Mars-Venus-Female-Male puzzles of Chapter 5 can 
also be solved by truth tables, although the translation device needed 
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is a bit more complex, and this type of problem is not considered 
further in the present book. 

Let us number the club members in some order PI> P2, P3, etc., 
and for each number i, let Vi be the proposition that Pi is Venusian, 
and let Fi be the proposition that Pi is female. Then Pi is Martian 
can be written ~Vi, and Pi is male can be written ~Fi. Now, Pi 
tells the truth if and only if Pi is either a Venusian female or a 
Martian male, which can be symbolized (Vi&Fi)v( ~Vi& ~Fi), or 
more simply, Vi=Fi. And so now if Pi asserts a proposition X, the 
reality of the situation is the following proposition: (Vi=Fi) x. 

This then is our translation device. Whenever Pi asserts X, we 
write down: (Vi_Fi) X. 

Consider, for example, Problem 7 of Chapter 5 (page 30)-the 
case of Ork and Bog. Let PI be Ork and P2 be Bog. Then we are 
given the following four propositions (after we apply the translation 
device): 

(1 ) (VI F 1) V 2 
(2) (V2_F2) ~Vl 

(3) (V1-F 1) ~F 2 

(4) (V2 F2) Fl 

The truth values of V I> F I> V 2, and F 2 can then be found by a 
truth table. (There are four unknowns V I> F I> V 2, and F 2 involved, 
and so there are sixteen cases to consider!) 

Note: Not all liar-truth teller problems can be solved by the transla­
tion devices in this chapter. These devices work fine for problems 
in which we are told what the speakers say and must then deduce 
certain facts about them. But for the more difficult type of puzzles 
in which we are to design a question or a statement to do a certain 
job, more thought is needed. There are other systematic devices that 
help in many cases, but this is a topic outside the main line of 
thought in this book. 
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ANSWERS TO EXERCISES 

1 . All three are knaves. 

2 . The proposition is a tautology. 

3 . We leave this to the reader. 

4 . P3 is a knight. 

5 . Oona is not on the island {and both natives are knights}. 

6 . Oona is on the island {and both natives are knights}. 

7 . Oona is on the island {and A is a knight; B is a knave}. 
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Logical Closure 
and Consistency 

INTERDEFIN ABILITY OF THE 
LOGICAL CONNECTIVES 

We are now familiar with the five basic logical connectives: ~, &, 
v, :J, and -. We could have started with fewer and defined the 
others in terms of them. This can be done in several ways, some of 
which will be illustrated in the following puzzles. 

1 

Suppose an intelligent man from Mars comes down to Earth and 
wants to learn our logic. He claims to understand the words "not" 
and "and," but he does not know the meaning of the word "or." 
How could we explain it to him, using only the notions of not and 
and? 

Let me rephrase the problem. Given any proposition p, he 
knows the meaning of ~p, and given any propositions p and q, he 
knows the meaning of p&q. What the Martian is looking for is a way 
of writing down an expression or formula in the letters p and q, using 
only the logical connectives ~ and &, such that the expression is 
logically equivalent to the expression pvq. How can this be done? 
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2 

Now suppose a lady hom the planet Venus comes here and tells us 
that she' understands the meanings of......., and V, but wants an explana­
tion of &, How can we define & in terms of......., and V? (That is, what 
expression in terms of p, q, ......." and V is logically equivalent to p&q?) 

3 

This time a being from Jupiter comes down who understands ......." &, 
and v, and wants us to define:) in terms of these, How can this be 
done? 

4 

Next comes a being from Saturn who strangely enough understands 
......., and:), but does not understand either & or v. How can we explain 
& and v to him? 

5 

Now comes a being from Uranus who understands only the connec­
tive :). It is not then possible to explain to him what & means, nor 
what ......., means, but it is possible to define v in terms of just the 
one connective :). How can this be done? (The solution is not at all 
obvious. That it is possible to do it is part of the folklore of mathe­
maticallogic, but I have been unable to find out the logician who 
discovered it.) 

6 

It is obvious that = can be defined in terms of ......." &, and v. Show 
two different ways of doing this. 
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7 . A Special Problem 

Suppose a being from outer space understands the meanings of ~ and 
=. It will not then be possible to explain to him or her the mean­
ing of ......." but it will be possible to explain &. How can this be 
done? {This discovery is mine, as far as I know.} 

Two Other Connectives. We now see that the logical connectives 
......." &, v,~, and = can all be defined from just the two connectives 
......., and &, or alternatively from"""" and v, or alternatively from"""" and 
~. Is there just one logical connective from which all five connectives 
can be defined? This problem was solved in 1913 by the logician 
Henry M. Sheffer. He defined plq to mean that p and q are not both 
true. The symbol "I" is known as the "Sheffer stroke"; we can read 
plq as "p and q are incompatible" {at least one is false}. He showed 
that ......." &, v, ~, = are all definable from the stroke symbol. 
Another logical connective that gives all other connectives is ~; 

this symbol is called the symbol for ;oint denial. We read p~q as 
"p and q are both false," or "neither p nor q is true." 

8 

How can ......." &, v,~, = all be defined from Sheffer's stroke? How 
can they all be defined from joint denial? 

The Logical Constant 1. A proposition X is called logically con­
tradictory or logically false if its negation ......., X is a tautology. For 
example, for any proposition p, the proposition {p&.......,p} is logically 
false. So is p= .......,p. 

We shall use the now standard symbol "1" as representing anyone 
particular logical falsehood {which one doesn't matter}. This can be 
regarded as fixed for the remainder of this book-and any other 
books you might read in which this symbol appears. {The symbol 
"1" is pronounced "eet"; it is the symbol "T" written upside down.} 
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For any proposition p, the proposition l=>p is a tautology (because 
1 is logically false, so 1=>p is true, regardless of whether p is true or 
false). Thus every proposition is a logical consequence of 1. (It's a 
good thing that 1 itself isn't true, for if it were, everything would be 
true and the whole world would explode!) 

Many modern formulations of propositional logic build their en­
tire theory on just=> and 1, because all the other logical connectives 
can be defined from these two (see Problem 9 below). This is the 
course we will adopt because it fits in best with the problems of this 
book. One then defines T as 1=>1. We refer to 1 as logical falsehood 
and T as logical truth (obviously T is a tautology). 

9 

How does one define all the logical connectives from => and 1? 

LOGICAL CLOSURE 

A Logically Qualified Machine. To illustrate the important notion 
of logical closure, let us imagine a computing machine programmed 
to prove various propositions. Whenever the machine proves a prop­
osition, it prints it out (more precisely, it prints out a sentence that 
expresses the proposition). The machine, if left to itself, will run on 
forever. 

We will call the machine logically qualified if it satisfies the 
following two conditions: 

(1) Every tautology will be proved by the machine sooner or later. 
(2) For any proposition p and q, if the machine ever proves p and 

proves p:::>q, then it will sooner or later prove q. (We might think of 
the machine as inferring q from the two propositions p and p:::>q. Of 
course the inference is valid.) 

Logically qualified machines have one very important property, of 
which the following problem illustrates some examples. 
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10 

Suppose a machine is logically qualified. 
(a) If the machine proves p, will it necessarily prove --p? 
(b) If the machine proves p and proves q, will it necessarily prove 

the single proposition p&q? 

Logical Closure. There is an old rule in logic called modus ponens, 
which is that having proved p and having proved p:::>q, one can then 
infer q. A set C of propositions is said to be closed under modus 
ponens if for any propositions p and q, if p and p:::>q are both in the 
set C, so is the proposition q. 

We can now define a set C of propositions to be logically closed 
if the following two conditions hold: 

Condition 1. C contains all tautologies. 
Condition 2. For any propositions p and q, if p and p:::>q are both 

in C, so is q. 
Thus a logically closed set is a set that contains all tautologies and 

that is closed under modus ponens. (The reason for the term logi­
cally closed will soon be apparent.) 

To say that a machine is logically qualified is tantamount to saying 
that the set C of all propositions that the machine can prove is a 
logically closed set. However, logically closed sets also arise in situa­
tions in which no machines are involved. For example, we will be 
considering mathematical systems in which the set of all proposi­
tions provable in the system is a logically closed set. Also, a good part 
of this book will be dealing with logicians whose set of beliefs is a 
logically closed set. 

Logical Consequence. We have defined Y to be a logical conse­
quence of X if the proposition X:::>Y is a tautology. We shall say that 
Y is a logical consequence of two propositions Xl and X2 if it is 
a consequence of the proposition XI &X2-in other words, if 
(XI &X2):::>Y is a tautology, or, what is the same thing, if the proposi-
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tion X1:::)(X2:::)Y) is a tautology. We define Y to be a logical conse­
quence of Xl> X2, and X3 if ((X1&X2)&X3):::)Y is a tautology­
or, what is the same thing, if X1:::)(X2:::)(X3:::)Y)) is a tautology. 
More 'generally, for any finite set of propositions Xl> ... , Xn, we 
can define Y to be a logical consequence of this set if the proposition 
(X1& ... &Xn):::)Y is a tautology. 

The importance of logically closed sets is that they enjoy the 
following property: 

Principle L (the Logical Closure Principle). If C i~ logically closed, 
then for any n proposition Xl>' .. ,Xn in C, all logical consequences 
of these n propositions are also in C. 

Discussion. Returning to our example of a logically qualified ma­
chine, Principle L tells us that if the machine should ever prove a 
proposition p, then it will sooner or later prove all logical conse­
quences of p; if the machine should ever prove two propositions p 
and q, it will sooner or later prove all logical consequences of p and 
q-and so forth, for any finite number of propositions. 

The same applies to logicians whose set of beliefs is logically 
closed. If a logician ever believes p, he will sooner or later believe 
all logical consequences of p; if he should ever believe p and q, he 
will believe all logical consequences of p and q; and so on. 

11 

Why is Principle L correct? 

12 

Another important property of logically closed sets is that if C is 
logically closed and contains some proposition p and its negation 
........ p, then every proposition must be in C. 

Why is this so? 
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CONSISTENCY 

The last problem brings us to the important notion of consistency. 
A logically closed set C will be called inconsistent if it contains 1 and 
consistent if it doesn't contain 1. 

The following is another important property of logically closed 
sets. 

Principle C. ~uppose C is logically closed. Then the following three 
conditions are all equivalent (anyone of them implies the other 
two): 

(1) C is inconsistent (C contains 1). 
(2) C contains all propositions. 
(3) C contains some proposition p and its negation ~p. 

Note: Given a set S of propositions that is not logically closed, S is 
said to be inconsistent if 1 is a logical consequence of some finite 
subset Xl> ... , Xn of propositions in S. (This is, incidentally, 
equivalent to saying that every proposition is a logical consequence 
of some finite subset of S.) However, we will be dealing almost 
exclusively with sets that are logically closed. 

l3 

Prove Principle C. 

SOLUTIONS 

1 . To say that at least one of the propositions p and q is true is to 
say that it is not the case that p and q are both false; in other words, 
it is not the case that ~p and ~q are both true. And so pvq is 
equivalent to the proposition ~(~p&~q). Since the Martian under­
stands ~ and &, then he will understand ~(~p&~q). And so you 
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can say to the Martian: "When I say p or q, all I mean is that it is 
not the case that not p and not q." 

2 . To say that p and q are both true is equivalent to saying that it 
is not the case that either p or q is false-in other words, it is not 
the case that either -p or -q is true. And so p&q is logically 
equivalent to the proposition -( -pv-q). 

3 . This can be done in several ways: On the one hand, p:>q is 
logically equivalent to -pv(p&q). It is also equivalent to -(p&-q) 
(it is not the case that p is true and q is false), and to -pvq. 

4· pvq is logically equivalent to -p:>q. And so we can get v in terms 
of - and:J. Once we have - and v, we can get & by the solution 
to Problem 2 above. More directly, p&q is equivalent to -(p:>-q), 
as the reader can verify. 

5 . This is tricky indeed! The proposition pvq happens to be logically 
equivalent to (p:>q):Jq, as the reader can verify by a truth table. 

6 . p-q is obviously equivalent to (p:>q)&(q:Jp). It is also equivalent 
to (p&q)v( -p&-q). 

7 . We have already solved this in the last chapter, in connection 
with the third knight-knave problem, page 16; we showed that p&q 
is logically equivalent to p_(p:>q). 

8 . Given Sheffer's stroke, we can get the other connectives as fol­
lows: First of all, -p is logically equivalent to pip. (The proposition 
pip is that at least one of the propositions p or p is false, but since 
the two propositions p and p are the same, this simply says that p 
is false.) Now that we have -, we can define pvq to be -(plq). (Since 
plq is the proposition that at least one of p or q is false, its negation 
-(plq) is equivalent to saying that they are not both false-i.e., that 
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at least one is true.) Once we have - and v, we can get & (by 
Problem 2), then=> and (by Problems 3 and 6). We thus get -, 
&, v, =>, and from Sheffer's stroke. 

If we start with joint denial l, instead of Sheffer's stroke, we 
proceed as follows: We first take -p to be plp. Then we take p&q 
to be -(plq). Having gotten - and &, we can then get all the rest 
in the manner we have seen. 

9 . The proposition -p is logically equivalent to p=>l, and so we can 
get - from=> and L Once we have - and =>, we can get v and & 
(by Problem 4). Then we can get _ from=> and &. 

10 • (a) Suppose the machine proves p. It will also prove p::>--p 
(since this is a tautology), hence it will print --p (by the second 
condition defining logical qualification). 

(b) Suppose the machine proves p and proves q. Now, the proposi­
tion p=>(q=>(p&q)) is a tautology, hence the machine will prove it. 
Once the machine has proved p and p::>( q=>(p&q)), it must prove 
q=>(p&q). Once the machine has proved this, then, since it proves 
q, it must prove p&q. 

(Actually this problem is but a special case of the next, as the 
reader will see.) 

11 . Let us first consider the case n = 1: Suppose Xl is in C, and 
Y is a logical consequence of Xl. Then XPY is a tautology, hence 
is in C (by Condition 1). Since Xl and XPY are both in C, so is 
Y (by Condition 2). 

Now let us consider the case n = 2: Suppose Xl and X2 are 
both in C, and Y is a logical consequence of Xl and X2. Then 
(XI &X2)=>Y is a tautology, hence Xp(X2=>Y) is a tautology (as the 
reader can verify) and is therefore in C. Since Xl and XI =>(X2=>Y) 
are both in C, so is X2=>Y (Condition 2). Since X2 and X2=>Y are in 
C, so is Y (again by Condition 2). 

For the case n = 3, suppose Y is a logical consequence of Xl> X2, 
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and X3. Then XI:J(X2:J(X3:JY)) is a tautology-it is logically equiva­
lent to (Xl &X2&X3):JY. Then using Condition 2 three times, we 
successively get X2:J(X3:JY) in C, (X3:JY) in C, and finally Y in C. 

It should be obvious how this proof generalizes for any positive 
whole number n. 

Note: We have remarked that Problem lOis but a special case of 
the present problem. The reason, of course, is that --p is a logical 
consequence of p, hence any logically closed set containing p must 
also contain --po Also, p&q is a logical consequence of the two 
propositions p and q, so any logically closed set containing both p 
and q must also contain p&q. 

12 . Suppose that p and its negation -p are both in C and that C 
is logically closed. Let q be any proposition whatsoever. The proposi­
tion (p&-p):Jq is a tautology (as the reader can check by a truth 
table, or more simply by observing that since p&-p must be false, 
then (p&-p):Jq must be true). And so q is a logical consequence of 
the true propositions p and -po Then according to Principle L, the 
proposition q must also be in C. And so every proposition q is in C. 

13 . We will show that the three conditions are all equivalent by 
showing that (1) implies (2), which in tum implies (3), which in tum 
implies (1). 

Suppose (1). Since every proposition is a logical consequence of 
1 and 1 is in C, then every proposition is in C (by Principle L). Thus 
(2) holds. 

It is completely obvious that (2) implies (3), because if all proposi­
tions are in C, then for any proposition p, both p and -p are in C. 

Now suppose that (3) holds-i.e., that for some p, both p and 
-p are in C. Since 1 is a logical consequence of p and -p, then 
1 must be in C (by Principle L)-i.e., C must be inconsistent. 
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