RECALL

SECANT LINE

TANGENT

gradient (= slope) of a (straight) line

$$
\begin{aligned}
& =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{\text { rise }}{\text { run }}
\end{aligned}
$$

Δx represents a small change in x, and Δy represents the corresponding change in y.

$$
A\binom{x}{y} \text { and } M_{1}\binom{x+\Delta x}{y+\Delta y}
$$

or

$$
A\binom{x}{f(x)} \text { and } M_{1}\binom{x+\Delta x}{f(x+\Delta x)}
$$

Thus the average slope of the secant line AM_{1} is equal to $\frac{\Delta y}{\Delta x}=\frac{f(x+\Delta x)-f(x)}{\Delta x}$.

As Δx becomes smaller and smaller (or "as Δx shrinks towards zero", or "as Δx heads towards zero"), this secant line approaches a line called the tangent to the curve at A.

The gradient of the tangent line is given by $\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$.

If this limit exists, it is denoted by $\frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{x}} \boldsymbol{f}(\boldsymbol{x})$, which is read "the derivative of $f(x)$ " or " $d d x$ of $f(x)$ " or by $\boldsymbol{f}^{\prime}(\boldsymbol{x})$, which is read also "the derivative of $f(x)$ " or " $f-$ dash of x ".

HISTORY

Calculus was discovered independently in the late 17th century by Newton and Leibniz.

Leibniz (1646-1716)

- German polymath and philosopher
- introduced the notation $\frac{d y}{d x}$, which refers to the instantaneous rate of change of y with respect of x.

Newton (1642-1726/27)

-English mathematician, astronomer and physicist

- described his version of differential calculus as 'the method of fluxions'

VOCABULARY

The process of finding a derivative is called "differentiation".
You do differentiation to get a derivative.
Functions which have derivative are called "differentiable functions".
differentiable at $x=3$ / differentiable on a set
If the derivative at a point does not exist, you can say that "the derivative is undefined".

THE PRODUCT RULE

Let f, g be differentiable functions.
Then the derivative of their product is $f^{\prime} g+g^{\prime} f$

THE QUOTIENT RULE

Let f, g be differentiable functions.
Then the derivative of their quotient is $\frac{f^{\prime} g-g \prime f}{g^{2}}$.

