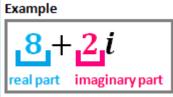
COMPLEX NUMBERS

DEFINITION

A <u>complex number</u> is a number that can be written in the form z = a + bi, where a and b are real numbers, and i satisfies the equation $x^2 = -1$.



a is called the <u>real part</u> of *z*, and is denoted by Re(z). *b* is called the <u>imaginary part</u> of *z*, and is denoted by Im(z).

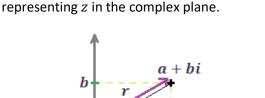
If a = 0, z is <u>purely imaginary</u>. If b = 0, z is purely real.

CONJUGATE

The <u>conjugate</u> of a complex number a + biis a - bi. It is often written with a bar over it: $\overline{a + bi} = a - bi$.

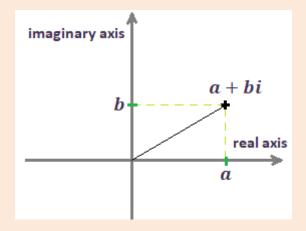
MODULUS (or magnitude)

Let z = a + bi. The <u>modulus</u> of z is denoted |z| or r and $|z| = r = \sqrt{a^2 + b^2}$. It is the distance to the origin of the point



a

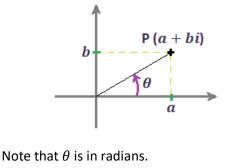
THE COMPLEX PLANE (or Argand plane)



ARGUMENT (or phase)

Let P be the point in the complex plane representing *z*.

The <u>argument</u> of z, denoted by $\arg z$ or θ , is the angle that line OP makes with the positive part of the real axis.



-> principal argument if $\theta \in (-\pi, \pi]$

POLAR FORM

$$z = r e^{i\theta}$$

The following equations relate a, b, r and θ : $a = r \cos \theta$ $b = r \sin \theta$

 $z = r(\cos\theta + i\sin\theta)$

TRIGONOMETRIC FORM

Note that $|e^{i\theta}| = 1$.