COMPLEX NUMBERS

DEFINITION

A complex number is a number that can be written in the form $z=a+b i$, where a and b are real numbers, and i satisfies the equation $x^{2}=-1$.

Example

$8+2 i$

real part imaginary part
a is called the real part of z, and is denoted by $\operatorname{Re}(z)$. b is called the imaginary part of z, and is denoted by $\operatorname{Im}(z)$.

If $a=0, z$ is purely imaginary.
If $b=0, z$ is purely real.

THE COMPLEX PLANE (or Argand plane)

TRIGONOMETRIC FORM

$$
z=r(\cos \theta+i \sin \theta)
$$

The following equations relate a, b, r and θ :

$$
\begin{aligned}
& a=r \cos \theta \\
& b=r \sin \theta
\end{aligned}
$$

CONJUGATE

The conjugate of a complex number $a+b i$ is $a-b i$. It is often written with a bar over it: $\overline{a+b \imath}=a-b i$.

MODULUS (or magnitude)

Let $z=a+b i$.
The modulus of z is denoted $|z|$ or r and $|z|=r=\sqrt{a^{2}+b^{2}}$.
It is the distance to the origin of the point representing z in the complex plane.

ARGUMENT (or phase)

Let P be the point in the complex plane representing z.
The argument of z, denoted by $\arg z$ or θ, is the angle that line OP makes with the positive part of the real axis.

Note that θ is in radians.
-> principal argument if $\theta \in(-\pi, \pi]$

POLAR FORM

$$
z=r e^{i \theta}
$$

Note that $\left|e^{i \theta}\right|=1$.

