Optimisation à deux variables

Pour équiper le club de bridge qu'il vient de créer, Michel a besoin de 16 tables, 72 chaises et 44 jeux de cartes. Il s'adresse à deux boutiques spécialisées :

- la boutique A lui propose un lot de 2 tables, 8 chaises et 11 jeux de cartes pour 500 €;
- la boutique B lui propose un lot de 2 tables, 10 chaises et 4 jeux de cartes pour 550 €.

Le but de cet exercice est de déterminer le nombre x de lots qu'il va acheter à la boutique A et le nombre y de lots qu'il va acheter à la boutique B pour que la dépense soit minimale.

Partie 1 : Détermination des contraintes

Ecrire le système des contraintes correspondant à ce problème. Montrer que ce système est

équivalent, pour
$$x$$
 et y entiers, au système S :
$$\begin{cases}
x \ge 0 \\
y \ge 0 \\
x + y \ge 8 \\
4x + 5y \ge 36 \\
11x + 4y \ge 44
\end{cases}$$

Partie 2 : Méthode graphique

- 1°) Déterminer graphiquement l'ensemble des points M(x; y) du plan dont les coordonnées vérifient le système S de la partie 1. On hachurera la partie de plan qui ne convient pas.
- 2°) Exprimer en fonction de x et y la dépense D correspondant à l'achat de x lots de la boutique A et y lots de la boutique B.
- 3°) Déterminer l'équation de la droite (d) correspondant à une dépense de 5500 € puis représenter (d) dans le repère précédent.
- 4°) Déterminer graphiquement le couple à coordonnées entière qui assurera la dépense minimale (préciser la méthode utilisée).

Quelle est alors la dépense en euros ?

Partie 3 : Utilisation d'une feuille de calcul

Michel décide d'utilser un tableur pour déterminer le couple (x; y) qui lui fournira la dépense minimale. Voici la feuille de calcul qu'il utilise :

	Α	В	С	D	Е	F	G	Н	I	J	К	L	М	N
1	v _ x	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	0	500	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000
3	1	550	1050	1550	2050	2550	3050	3550	4050	4550	5050	5550	6050	6550
4	2	1100	1600	2100	2600	3100	3600	4100	4600	5100	5600	6100	6600	7100
5	3	1650	2150	2650	3150	3650	4150	4650	5150	5650	6150	6650	7150	7650
6	4	2200	2700	3200	3700	4200	4700	5200	5700	6200	6700	7200	7700	8200
7	5	2750	3250	3750	4250	4750	5250	5750	6250	6750	7250	7750	8250	8750
8	6	3300	3800	4300	4800	5300	5800	6300	6800	7300	7800	8300	8800	9300
9	7	3850	4350	4850	5350	5850	6350	6850	7350	7850	8350	8850	9350	9850
10	8	4400	4900	5400	5900	6400	6900	7400	7900	8400	8900	9400	9900	10400
11	9	4950	5450	5950	6450	6950	7450	7950	8450	8950	9450	9950	10450	10950
12	10	5500	6000	6500	7000	7500	8000	8500	9000	9500	10000	10500	11000	11500

Optimisation à deux variables

Par exemple, la cellule D5 donne la dépense correspondant à l'achat de 2 lots de la boutique A et 3 lots de la boutique B.

1°) Michel a rentré dans la cellule B2 une formule puis il a effectué un « copier-glisser » dans les autres cellules du tableau.

Donner une formule possible rentrée en B2.

- 2°) Dans le tableau, certaines cellules correspondent à des valeurs de *x* et *y* que Michel ne peut pas choisir simultanément. En utilisant le graphique de la partie 2, barrer ces cellules.
- 3°) En déduire la dépense minimale et indiquer les valeurs de *x* et *y* correspondantes.

Partie 4 : Utilisation d'une feuille de calcul

Il est possible de faire en sorte que la formule rentrée en B2 n'affiche le calcul de la dépense que dans les cellules que Michel peut choisir.

On obtient alors la feuille de calcul suivante :

	Α	В	С	D	Е	F	G	Н	I	J	К	L	М	N
1	v ×	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0										4500	5000	5500	6000
3	1									4550	5050	5550	6050	6550
4	2								4600	5100	5600	6100	6600	7100
5	3							4650	5150	5650	6150	6650	7150	7650
6	4					4200	4700	5200	5700	6200	6700	7200	7700	8200
7	5				4250	4750	5250	5750	6250	6750	7250	7750	8250	8750
8	6			4300	4800	5300	5800	6300	6800	7300	7800	8300	8800	9300
9	7			4850	5350	5850	6350	6850	7350	7850	8350	8850	9350	9850
10	8			5400	5900	6400	6900	7400	7900	8400	8900	9400	9900	10400
11	9		5450	5950	6450	6950	7450	7950	8450	8950	9450	9950	10450	10950
12	10		6000	6500	7000	7500	8000	8500	9000	9500	10000	10500	11000	11500

Donner une formule possible rentrée dans B2.