LA GÉOMÉTRIE DU COMPAS

Constructions au compas - Théorème de Mohr-Mascheroni

Baptiste GORIN

Dans les treize livres des $\acute{E}l\acute{e}ments$, les constructions géométriques étudiées par Euclide s'effectuent à la règle et au compas uniquement.

Certains problèmes de construction à l'aide de ces seuls instruments se sont révélés impossible; il en est ainsi de la quadrature du cercle, de la duplication du cube et de la trisection de l'angle.

Par ailleurs, il s'avère que si la construction d'un point à la règle et au compas peut être réalisée, seul le compas suffit pour le construire.

Cette note s'intéresse à la géométrie du compas.

Des constructions effectuées à l'aide du compas, qu'elles soient élémentaires, classiques ou célèbres, sont tout d'abord présentées avant de démontrer le théorème de Mohr-Mascheroni.

I. Constructions au compas

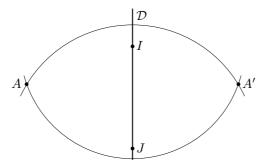
Construction I.1

Étant donnés une droite \mathcal{D} et un point A, construire, au compas, le symétrique de A par rapport à \mathcal{D} . Première construction

Soient I et J deux points de \mathcal{D} .

Les cercles de centres I et J passant par A se coupent en A' (et A).

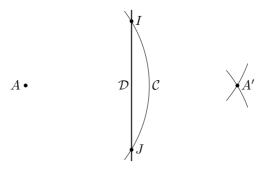
Le point A' est le symétrique de A par rapport à \mathcal{D} .



Deuxième construction

Soit $\mathcal C$ un cercle de centre A et de rayon R coupant $\mathcal D$ en I et J. Les cercles de centres I et J et de rayon R se coupent en A et A'.

Le point A' est le symétrique de A par rapport à \mathcal{D} .



Construction I.2

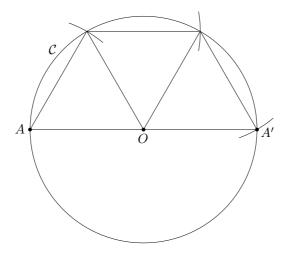
Étant donnés deux points A et O, construire, au compas, le symétrique de A par rapport à O.

Première construction

Soit C le cercle de centre O passant par A.

À partir du point A, reporter sur le cercle \mathcal{C} trois fois la longueur OA.

Le point A' obtenu est le symétrique de A par rapport à O.



En effet, la construction fait apparaître trois triangles équilatéraux de sorte que les points A, O et A' sont alignés.

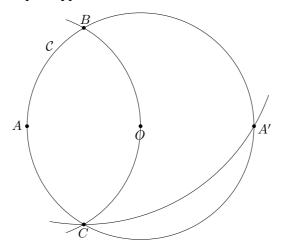
Deuxième construction

Soit C le cercle de centre O passant par A.

Le cercle de centre A passant par O coupe C en B et C.

Le cercle de centre B passant par C coupe C en A' (et C).

Le point A' est le symétrique de A par rapport à O.



En effet, le cercle \mathcal{C} est circonscrit au triangle équilatéral A'BC.

Construction I.3

Étant donné un segment [AB], construire, au compas, un segment de longueur nAB.

Construction

Posons $A_0 = A$ et $A_1 = B$.

Construire, pour k = 2, ..., n, le point A_k , symétrique de A_{k-2} par rapport à A_{k-1} (construction I.2). Le segment $[AA_n]$ a pour longueur nAB.

Construction I.4

Construire, au compas, le milieu d'un segment [AB] donné.

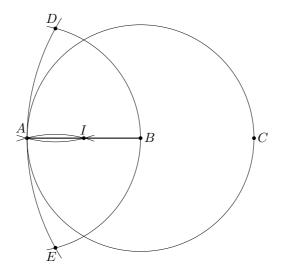
Construction

Soit C le symétrique de A par rapport à B (construction I.2).

Les cercles de centre A passant par B et de centre C passant par A se coupent en D et E.

Les cercles de centres D et E passant par A se coupent en I (et A).

Le point I est le milieu du segment [AB].



Démonstration

Pour des raisons de symétrie, le point I appartient à la droite (AB).

 $Première\ d\'emonstration.$ — Soient A' le symétrique de A par rapport à C et J le point d'intersection des droites

J étant le pied de la hauteur issue de D dans le triangle DAA' rectangle en D, on a : $AD^2 = AJ \times AA'$.

Comme AD = AB et AA' = 4AB, il vient : AB = 4AJ.

Or, J est le milieu du segment [AI], donc AB = 2AI.

Ainsi I est le milieu du segment [AB].

Deuxième démonstration. — Les triangles isocèles DAI et CDA ont un angle en commun; ils sont donc semblables. D'où:

$$\frac{AI}{AD} = \frac{AD}{AC} = \frac{1}{2}$$

$$\label{eq:Donc} \begin{split} & \text{Donc } AI = \frac{1}{2}AB. \\ & \text{Ainsi } I \text{ est le milieu du segment } [AB]. \end{split}$$

C.Q.F.D.

Construction I.5

Étant donnés une droite \mathcal{D} et un point A, construire, au compas, le projeté orthogonal de A sur \mathcal{D} .

Construction

Soit A' le symétrique de A par rapport à \mathcal{D} (construction I.2).

Soit H le milieu du segment [AA'] (construction I.4).

Le point H est le projeté orthogonal de A sur \mathcal{D} .

Construction I.6

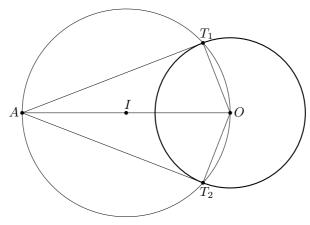
Étant donnés un cercle \mathcal{C} de centre O et un point A extérieur à \mathcal{C} , construire, au compas, les points de tangence à C.

Construction

Soit I le milieu du segment [AO] (construction I.4).

Le cercle de centre I passant par A coupe C en T_1 et T_2 .

 T_1 et T_2 sont les points de tangence à C.



En effet, les triangles AOT_1 et AOT_2 sont rectangles en T_1 et T_2 respectivement, donc leur cercle circonscrit a pour diamètre l'hypoténuse [AO].

Construction I.7

Construire, au compas, un carré dont un coté [AB] est donné.

Construction

Soit C le cercle de centre A passant par B.

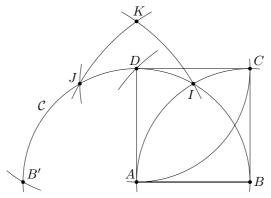
Soient I, J et B' les points de C obtenus en reportant trois fois la longueur AB à partir de B. B' est alors le point diamétralement opposé à B (construction I.2).

Les cercles de centre B passant par J et de centre B' passant par I se coupent en K.

Le cercle de centre B et rayon AK coupe C en D.

Les cercles de centre D passant par A et de centre B passant par A se coupent en C (et A).

Le quadrilatère ABCD est un carré.



Démonstration

Dans le triangle JB'B rectangle en J, on a : $BJ = AB\sqrt{3}$.

Dans le triangle KAB, rectangle en K, on a : $AK^2 = BK^2 - AB^2 = BJ^2 - AB^2 = 2AB^2$.

Par suite, $BD = \sqrt{2}AB$ est la diagonale d'un carré de côté AB.

C.Q.F.D.

Remarque 1. — Cette construction permet répondre aux problèmes suivants :

- construire un carré inscrit dans un cercle donné;
- étant donnés deux points A et B, construire un point K tel que (AK) et (AB) soient perpendiculaires.

Construction I.8

Construire, au compas, un carré dont deux sommets opposés A et C sont donnés.

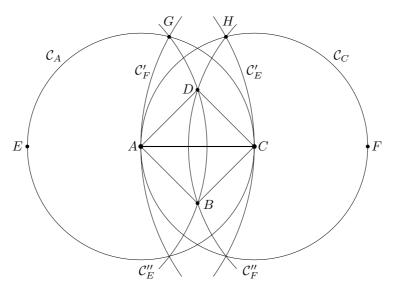
Construction

On note \mathcal{C}_A et \mathcal{C}_C les cercles de centres A et C et de rayon AC.

Soient E le symétrique de C par rapport à A et F le symétrique de A par rapport à C (construction I.2).

Les cercles \mathcal{C}_E' et \mathcal{C}_F' de centres E et F et de rayon EC = FA coupent \mathcal{C}_C et \mathcal{C}_A en H et G. Les cercles \mathcal{C}_E'' et \mathcal{C}_F'' de centres E et F et de rayon EG = FH se coupent en B et D.

Le quadrilatère ABCD est un carré.



Démonstration

En considérant le triangle AFG, on a :

$$\cos\left(\widehat{FAG}\right) = \frac{AF^2 + AG^2 - FG^2}{2AF \cdot AG} = \frac{1}{4}$$

Donc, dans le triangle EAG, il vient :

$$EG^{2} = AE^{2} + AG^{2} - 2AE \cdot AG\cos\left(\widehat{GAE}\right)$$
$$= 2AC^{2} + 2AC^{2}\cos\left(\widehat{FAG}\right)$$
$$= \frac{5}{2}AC^{2}$$

Or, la droite (BD) est la médiatrice des segments [AC] et [EF]; donc, si I est le milieu (commun) de ces deux segments, on a:

$$BI^2 = EB^2 - EI^2 = EG^2 - \frac{9}{4}AC^2 = \frac{5}{2}AC^2 - \frac{9}{4}AC^2 = \frac{1}{4}AC^2$$

Par suite : $BI = DI = \frac{1}{2}AC$.

Finalement ABCD est un carré.

C.Q.F.D.

Construction I.9

Diviser, au compas, un arc de cercle en deux parties égales.

Construction

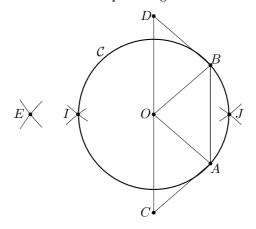
Soient \mathcal{C} un cercle de centre O, A et B deux points de \mathcal{C} .

Soient C et D les points tels que OBAC et OABD soient des parallélogrammes.

Soit E le point d'intersection des cercles de centres C et D et de rayon AD = BC.

Soient enfin I et J les points d'intersection des cercles de centres C et D et de rayon OE.

Alors I et J appartiennent au cercle C et divisent les petit et grand arcs de cercle \widehat{AB} en deux parties égales.



Démonstration

La figure présentant un axe de symétrie auquel les points O, E, I et J appartiennent, il suffit de montrer que Iet J sont sur le cercle \mathcal{C} .

Dans le parallélogramme OBAC, on a :

$$OA^2 + BC^2 = 2(OB^2 + OC^2)$$

soit : $BC^2 = 2AB^2 + R^2$.

Le triangle OCE étant rectangle en O, on a, d'après le théorème de Pythagore : $CE^2 = OC^2 + OE^2$.

Comme CB = CE, il vient : $OE^2 = AB^2 + R^2$.

Le triangle OCI étant rectangle en O, on a, d'après le théorème de Pythagore : $OI^2 = CI^2 - CO^2$. D'après ce qui précède, il vient : $OI^2 = OE^2 - CO^2 = AB^2 + R^2 - CO^2 = R^2$.

Ainsi OI = R.

De même, on a OJ = R.

Ainsi I et J appartiennent au cercle \mathcal{C} et, par conséquent, divisent les petit et grands arcs de cercle \widehat{AB} en deux parties égales.

Construction I.10

Étant données trois longueurs a, b et c, construire, au compas, la longueur d telle que $\frac{a}{b} = \frac{c}{d}$.

Construction

Premier cas: b < 2a

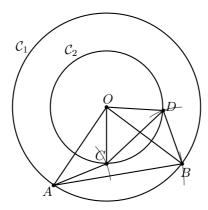
Soient C_1 et C_2 les cercles de centres O et de rayons respectifs a et c.

Soient $A, B \in \mathcal{C}_1$ tels que AB = b (A et B existent puisque c < 2a).

Soit ℓ une longueur telle que $\ell > |a-c|$.

Les cercles de centres A et B et de rayon ℓ coupent \mathcal{C}_2 en C et D.

Alors CD = d.



En effet, les triangles OAC et OBD sont isométriques de sorte les triangles isocèles OAB et OCD sont semblables; d'où:

$$\frac{OA}{AB} = \frac{OC}{CD}$$

soit : $\frac{a}{b} = \frac{c}{CD}$.

On a bien CD = d.

Deuxième $cas:b\geqslant 2a$ et c<2aIl suffit de considérer l'égalité $\frac{a}{c}=\frac{b}{d}$ au lieu de $\frac{a}{b}=\frac{c}{x}$ et d'appliquer le premier cas.

Troisième cas : $b \geqslant 2a$ et $c \geqslant 2a$

Il suffit de construire une longueur na (construction I.3) telle que b < 2(na) puis d'appliquer le premier cas en construisant la longueur d' telle que $\frac{na}{b} = \frac{c}{d'}$.

Alors d = nd' (construction I.3)

Construction I.11

Diviser, au compas, un segment donné [AB] en un segment de longueur $\frac{AB}{n}$.

Construction

Soit $C \in [AB)$ tel que AC = nAB (construction I.3).

Soit d la longueur telle que $\frac{AC}{AB} = \frac{AB}{d}$ (construction I.10).

Alors $d = \frac{AB}{n}$.

Construction I.12

Construire, au compas, l'inverse A' d'un point A, le cercle d'inversion C_i étant donné par son centre O et son rayon R.

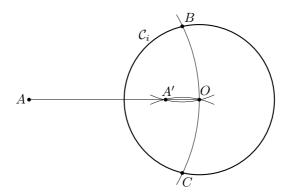
Première construction

Premier cas : $OA > \frac{R}{2}$

Soient B et C les points d'intersection de C_i et du cercle de centre A passant par O.

Les cercles de centres B et C passant par O se coupent en A' (et O).

Le point A' est l'inverse de A par rapport à C_i .



Pour des raisons de symétrie, le point A' appartient à la droite (OA).

Par ailleurs, les triangles isocèles ABO et BA'O ont un angle en commun; ils sont donc semblables. D'où :

$$\frac{OA}{OB} = \frac{OB}{OA'}$$

Soit : $OA \times OA' = OB^2 = R^2$.

A et A' sont donc inverses l'un de l'autre.

Deuxième cas : $OA \leqslant \frac{R}{2}$

Soit $A_1 \in [OA)$ tel que $OA_1 = nOA > \frac{R}{2}$ (construction I.3) et A'_1 l'inverse de A_1 par rapport à C_i (premier cas).

Soit $A' \in [OA)$ tel que $OA' = nOA'_1$ (construction I.3).

Le point A' est l'inverse de A par rapport à C_i .

En effet, on a :
$$OA \times OA' = \frac{OA_1}{n} \times nOA'_1 = OA_1 \times OA'_1 = R^2$$
.

Deuxième construction

Premier cas : OA = R

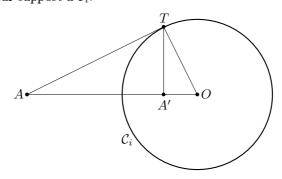
A et A' sont confondus.

 $Deuxi\`eme\ cas:OA>R$

Soit T un point de tangence C_i (construction I.6).

Soit A' la projection orthogonale de T sur la droite (OA).

Le point A' est l'inverse de A par rapport à C_i .



En effet, les triangles rectangles TAO et A'TO sont semblables : d'où :

$$\frac{OA}{OT} = \frac{OT}{OA'}$$

Soit : $OA \times OA' = OT^2 = R^2$.

A et A' sont donc inverses l'un de l'autre.

 $Troisi\`eme\ cas:OA < R$

Soient $A_1 \in [OA)$ tel que $OA_1 = nOA > R$ (construction I.3) et A'_1 l'inverse de A_1 par rapport à C_i (deuxième cas).

Soit $A' \in [OA)$ tel que $OA' = nOA'_1$ (construction I.3).

Le point A' est l'inverse de A par rapport à C_i .

Construction I.13

À son retour de la campagne d'Italie, Napoléon Bonaparte signala à l'Académie des Sciences l'oeuvre du mathématicien italien Lorenzo Mascheroni (1750-1800) et présenta notamment le problème suivant :

Construire, au compas, le centre O d'un cercle $\mathcal C$ donné sans son centre

Pierre Simon de Laplace (1749-1827) aurait dit alors : « nous attendions tout de vous, général, sauf des leçons de géométrie » .

Première construction

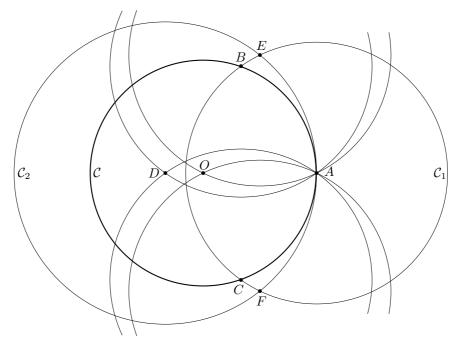
Soient A et B deux points du cercle C.

Le cercle C_1 de centre A passant par B recoupe le cercle C en C.

Les cercles de centres B et C passant par A se coupent en D (et A).

Le cercle C_2 de centre D passant par A coupe C_1 en E et F.

Les cercles de centre E et F passant par A se coupent en O, centre du cercle \mathcal{C} .



Cette construction a été fournie par Napoléon. Cependant, on pense que l'auteur de cette solution est Mascheroni et que celle-ci a été soufflée à l'empereur par Gaspard Monge (1746-1818).

Démonstration

Soit O' le point obtenu par la construction précédente.

Notons que la figure admet un axe de symétrie, à savoir la droite à laquelle les points A, D, O et O' appartiennent. De plus, tous les points de la figure appartiennent au même demi-plan déterminé par la tangente à C en A. Première démonstration. — Soient I le point d'intersection de (BC) et (AD), J le point d'intersection de (EF) et (O'A). I et J sont les milieux respectifs des segments [AD] et [AO'].

Montrons que O' coïncide avec le centre O du cercle C, autrement dit que J est le milieu de [AO].

Notons R, R_1 et R_2 les rayons respectifs des cercles C, C_1 et C_2 .

I appartient à l'axe radical des cercles \mathcal{C} et \mathcal{C}_1 , dont a la même puissance par rapport à ceux deux cercles :

$$IO^2 - R^2 = IA^2 - R_1^2$$

soit:

$$IA^2 - IO^2 = R_1^2 - R^2$$

 $IA^2 - (OA - IA)^2 = R_1^2 - R^2$
 $2 \times OA \times IA - OA^2 = R_1^2 - R^2$

donc :
$$AI = \frac{R_1^2}{2OA} = \frac{R_1^2}{2R}$$
.

De même, J appartient à l'axe radical des cercles C_1 et C_2 , donc : $AJ = \frac{R_1^2}{2R_2}$.

Or, I est le milieu du segment [AD], donc $AI = \frac{R_2}{2}$.

Par suite, on a : $IA = \frac{R_1^2}{2R} = \frac{R_2}{2}$, soit $R_1^2 = RR_2$.

Finalement : $AJ = \frac{R_1^2}{2R_2} = \frac{R}{2}$, autrement dit J est le milieu du segment [AO].

Deuxième démonstration. — Les triangles OAB et BDA sont isocèles en O et B respectivement. Comme ils

ont l'angle \widehat{BAO} en commun, ils sont donc semblables. D'où :

$$\frac{AO}{AB} = \frac{AB}{AD}$$

soit : $AB^2 = AD \times AO$.

Les triangles EO'A et DAE sont isocèles en E et D respectivement. Comme ils ont l'angle $\widehat{EAO'}$ en commun, ils sont donc semblables. D'où:

$$\frac{AO'}{AE} = \frac{AE}{AD}$$

soit : $AE^2 = AD \times AO'$.

Or, B et E appartiennent au cercle C_1 , donc AB = AE.

D'où : AO' = AO.

Comme les point A, O et O' sont alignés et appartiennent à un même demi-plan, on en conclut que les points O et O' sont confondus.

C.Q.F.D.

Deuxième construction

Soient A et B deux points du cercle \mathcal{C} .

Le cercle C_1 de centre A passant par B recoupe le cercle C en C.

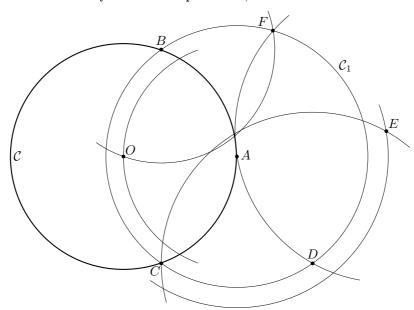
Soit D le point de C_1 diamétralement opposé à B (construction I.2).

Les cercles de centres A et D et de rayon CD se coupent en E.

Le cercle de centre E et de rayon CD coupe C_1 en F (et D).

La longueur BF est égal au rayon du cercle C.

Les cercles de centre A et B et de rayon BF se coupent en O, centre du cercle C.



Démonstration

F étant le symétriques de D par rapport à la droite (AE), les triangles isocèles EAF et EAD sont isométriques. On a:

$$\widehat{FAB} = \pi - \widehat{DAE} - \widehat{EAF}$$
$$= \pi - 2\widehat{EAF}$$
$$= \widehat{FEA}$$

Le triangle ABF étant isocèle en A, on en déduit que les triangles ABF et EAF sont semblables. Donc : $\frac{BF}{AF} = \frac{AF}{AE}$ Comme AE = CD, il vient : $AF^2 = CD \times BF$.

Soit H le pied de la hauteur issue de de A dans le triangle ABC. On a :

$$AB \times BC \times CA = 4R\mathcal{A}(ABC)$$

où R désigne le rayon du cercle inscrit au triangle ABC.

Comme $\mathcal{A}(ABC) = \frac{AH \times BC}{2}$, on obtient : $AB \times AC = 2R \times AH$.

Les triangles HAB et CDB rectangles en H et C respectivement étant semblables, on a : $AH = \frac{1}{2}CD$.

Donc : $AB \times AC = AB^2 = R \times CD$.

B et F appartenant au cercle C_1 , on a AB = AF, donc $CD \times BF = R \times CD$.

Ainsi BF = R.

C.Q.F.D.

Troisième construction

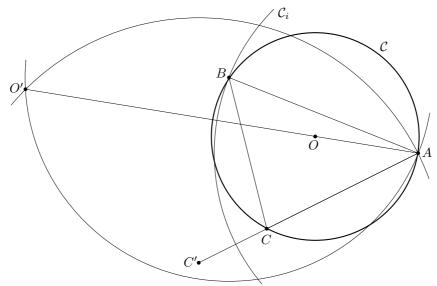
Soient A, B et C trois points du cercle C.

Soient C_i le cercle de centre A passant par B et i l'inversion correspondante.

Soit C' l'inverse de C par i (construction I.12).

Les cercles de centres B et C' passant par A se coupent en A et O'.

L'inverse de O' par i est le centre O du cercle C.



Démonstration

Les inverses de B et C par i sont B et C' respectivement.

On en déduit que les inverses des cercles de centres B et C' passant par A sont les médiatrices des segments [AB] et [AC].

En considérant les points d'intersection, on en déduit que l'inverse de O' est le centre O du cercle circonscrit au triangle ABC.

C.Q.F.D

Remarque 2. — Pour cette troisième construction, seule la donnée de trois points du cercle suffit à construire le centre; le tracé du cercle est inutile.

II. Théorème de Mohr-Mascheroni

En 1797, dans La geometria del compasso, Lorenzo Mascheroni démontre que tout point constructible à la règle et au compas est constructible au compas seul.

Or, il s'avère que le mathématicien danois Georg Mohr a démontré ce résultat en 1672 dans Euclides danicus (Euclide le danois), ouvrage perdu et ignoré, retrouvé en 1928 chez un bouquiniste de Copenhague par un étudiant en mathématiques.

Théorème (Mohr-Mascheroni). — Tout point constructible à la règle et au compas est constructible au compas seul.

Démonstration

Il suffit de montrer que les points suivants sont constructibles au compas uniquement :

- les points d'intersection de deux cercles déterminé chacun par son centre et son rayon (construction II.1);
- les points d'intersection d'un cercle donné par son centre et son rayon et d'une droite donnée par deux points (construction II.2) ;

ullet les points d'intersection de deux droites déterminées chacune par deux points (construction II.3). Construction II.1

Il n'y a rien à démontrer.

Première démonstration

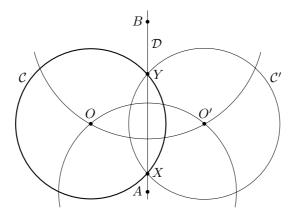
Construction II.2

Soient \mathcal{C} un cercle de centre O et de rayon R et \mathcal{D} une droite déterminée par deux points A et B. Notons X et Y les points d'intersection de \mathcal{C} et \mathcal{D} .

Premier cas: O n'appartient pas à la droite \mathcal{D}

Les cercles de centre A et B passant par O se recoupent en O', symétrique de O par rapport à \mathcal{D} . Soit alors \mathcal{C}' le symétrique de \mathcal{C} par rapport à \mathcal{D} .

X et Y sont alors les points d'intersection de \mathcal{C} et \mathcal{C}' .



Deuxième cas : O appartient à la droite \mathcal{D} .

Soient $C \in \mathcal{C}$ et D le deuxième point d'intersection de \mathcal{C} et (AC) (premier cas).

Soit C_1 un cercle de centre O_1 passant par C et D et de rayon R_1 supérieur à R.

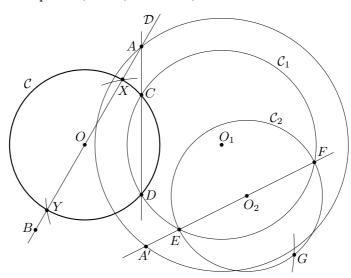
On considère deux points E et F de C_1 tels que EF = 2R (la longueur 2R est constructible à partir de deux points diamétralement opposés sur C).

Soit A' un point d'intersection de la droite (EF) avec le cercle de centre O_1 passant par A (premier cas).

Soient O_2 le milieu du segment [EF] (contruction I.5) et C_2 le cercle de centre O_2 passant par E.

On considère un point G de C_2 tel que A'G = AD.

Les points X et Y sont alors déterminés par : $X, Y \in \mathcal{C}, DX = EG, DY = FG$.



En effet, la puissance de A par rapport au cercle $\mathcal C$ est égale à :

$$AX \times AY = AC \times AD$$

La puissance de A par rapport au cercle C_2 est égale à :

$$AC \times AD = AO_1^2 - R_1^2 = A'O_1^2 - R_1^2 = A'E \times A'F$$

On en déduit que $AX \times AY = A'E \times A'F$.

Il s'ensuit que la configuration déterminée par les points A, X, O, Y et D est isométrique à celle déterminée par

 A', E, O_2, F et G.

Construction II.3

Soient \mathcal{D}_1 et \mathcal{D}_2 deux droites déterminées par les points A_1 et B_1 d'une part, A_2 et B_2 d'autre part.

Notons I leur point d'intersection.

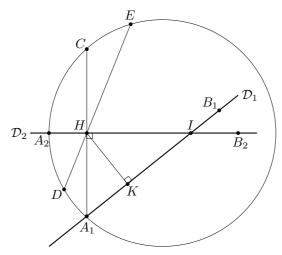
Première méthode

Soient H le projeté orthogonal de A_1 sur \mathcal{D}_2 et K le projeté orthogonal de H sur \mathcal{D}_1 (construction I.4).

On a : $A_1H^2 = A_1K \times A_1I$.

Construisons la longueur $\ell=A_1I$: soient C le symétrique de A_1 par rapport à H (construction I.2), \mathcal{C}' un cercle passant par A_1 et $C, D \in \mathcal{C}'$ tel que $HD = A_1K$, et E le second point d'intersection de \mathcal{C}' et (HD)(construction II.1). Alors $HE = \ell$.

En effet : $HA_1^2 = HA_1 \times HC = HD \times HE = A_1K \times HE$; il vient : $HE = A_1I = \ell$.



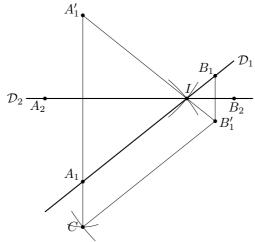
I est alors le point d'intersection de la droite \mathcal{D}_1 et du cercle de centre A_1 et de rayon ℓ (deuxième cas de la construction II.2).

Deuxième méthode

Soient A'_1 et B'_1 les symétriques de A_1 et B_1 par rapport à la droite (A_2B_2) (construction I.1).

Soit C le point tel que $A_1B_1B_1'C$ soit un parallélogramme. Soit d la longueur telle que $\frac{A_1'C}{A_1'A_1} = \frac{A_1'B_1'}{d}$ (construction I.10).

I est alors un des deux points d'intersection des cercles de centre A_1 et A'_1 et de rayon d.



En effet, d'après le théorème de Thalès, on a : $\frac{A_1'C}{A_1'A_1} = \frac{A_1'B_1'}{A_1'I}$.

Donc $A'_1I = A_1I = d$.

Deuxième démonstration

Construction II.2

Soient \mathcal{C} un cercle de centre O et de rayon R et \mathcal{D} une droite déterminée par deux points A et B.

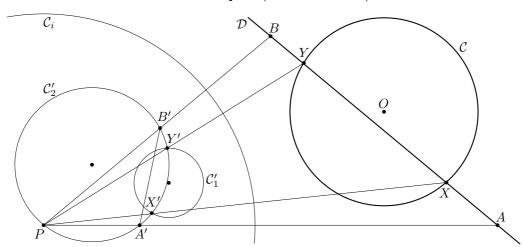
Notons X et Y les points d'intersection de \mathcal{C} et \mathcal{D} .

Soient C_i un cercle ne contenant aucun élément de la figure, P son centre et i l'inversion par rapport à C_i . Soient A' et B' les inverses de A et B par i (construction I.12) et \mathcal{C}'_2 le cercle circonscrit au triangle PA'B' (dont le centre est déterminé par la troisième construction I.13).

Soit C'_1 l'inverse du cercle C par i (construit à partir des inverses de trois points de C et dont le centre est déterminé par la troisième construction I.13).

Soient X' et Y' les points d'intersection des cercles \mathcal{C}'_1 et \mathcal{C}'_2 .

Les points X et Y sont les inverses de X' et Y' par i (construction I.12).



En effet, le cercle C'_2 est l'inverse de la droite \mathcal{D} par i.

Donc, les points d'intersection des cercles \mathcal{C}'_1 et \mathcal{C}'_2 ont pour inverses par i les points d'intersection du cercle \mathcal{C} et de la droite \mathcal{D} , à savoir X et Y.

Construction II.3

Soient \mathcal{D}_1 et \mathcal{D}_2 deux droites déterminées par les points A_1 et B_1 d'une part, A_2 et B_2 d'autre part. Notons I leur point d'intersection.

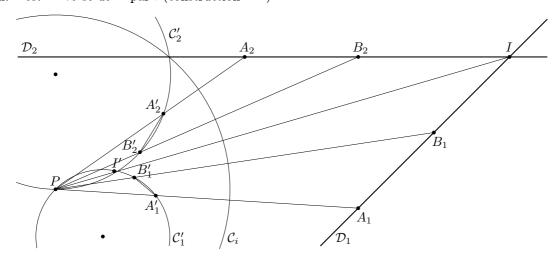
Soient C_i un cercle ne contenant aucun élément de la figure, P son centre et i l'inversion par rapport à C_i .

Soient A_1', B_1', C_1' et D_1' les inverses de A, B, C et D par i (construction I.12).

Soient C'_1 et C'_2 les cercles circonscrits aux triangle $PA'_1B'_1$ et $PC'_1D'_1$ (dont les centres sont déterminés par la troisième construction I.13).

Les cercles C'_1 et C'_2 se coupent en I' (et P).

Le point I est l'inverse de I' par i (construction I.12).



En effet, les cercles \mathcal{C}_1' et \mathcal{C}_2' sont les inverses des droites \mathcal{D}_1 et \mathcal{D}_2 respectivement.

Donc, le point d'intersection I' des cercles C'_1 et C'_2 a pour inverse par i le point d'intersection des droites \mathcal{D}_1 et \mathcal{D}_2 , à savoir I.

C.Q.F.D.