Polynômes à une indéterminée

Préparation à l'agrégation interne année 2008-09

Séance du mardi 8 septembre

Exercices à chercher en priorité: 1.1; 2.1; 2.2; 2.3; 2.4; 2.6 et ceux de la partie 3.

1 Racines et PGCD

Exercice 1.1

- 1. Soit \mathbb{K} un corps commutatif. Démontrer que si P est un polynôme de $\mathbb{K}[X]$ de degré n $(n \in \mathbb{N}^*)$ alors il admet au plus n racines distinctes.
- 2. (a) On suppose de plus que \mathbb{K} est infini. Démontrer que si P est un polynôme de $\mathbb{K}[X]$ tel que P(x) = 0 pour tout $x \in \mathbb{K}$ alors P = 0.
 - (b) Qu'en est-il si $\mathbb{K} = \mathbb{Z}/p\mathbb{Z}$ avec p un nombre premier?

Exercice 1.2 (PGCD de deux polynômes)

- 1. Déterminer le pgcd de $X^p 1$ et de $X^q 1$ dans $\mathbb{R}[X]$ (où p et q désignent des entiers naturels supérieurs ou égaux à 2).
- 2. On pose $P = X^5 13X^4 + 67X^3 171X^2 + 216X 108$; calculer le pgcd de P et P' et en déduire une décomposition de P (indication : calculer le pgcd de P' et de 5P).

Exercice 1.3

Soit A, B, C trois polynômes appartenant $\mathbb{C}[X]$ deux à deux premiers entre eux tels que $A^2 + B^2 = C^2$

- 1. Montrons que B+C et B-C sont des carrés de polynômes.
- 2. En déduire l'expression des polynômes A, B et C.

Exercice 1.4 (Résultant de deux polynômes)

Soit \mathbb{K} un corps commutatif.

1. Question préliminaire : Démontrer que deux polynômes de $\mathbb{K}[X]$ P et Q de degré respectivement m et n au moins égaux à 1.Démontrer que le PGCD de P et Q est de degré supérieur ou égal à 1 si seulement si il existe deux polynômes non nuls $R, S \in \mathbb{K}[X]$ tels que :

$$\begin{cases} deg(R) \le n - 1 \\ deg(S) \le m - 1 \\ PR = QS \end{cases}$$

- 2. Dans cette question on suppose que m=3 et n=2.
 - (a) On pose $P=a_3X^3+a_2X^2+a_1X+a_0$ et $Q=b_2X^2+b_1X+b_0$. Démontrer que P et Q admet un facteur commun de degré ≥ 1 si et seulement si :

$$\begin{vmatrix} a_3 & 0 & b_2 & 0 & 0 \\ a_2 & a_3 & b_1 & b_2 & 0 \\ a_1 & a_2 & b_0 & b_1 & b_2 \\ a_0 & a_1 & 0 & b_0 & b_1 \\ 0 & a_0 & 0 & 0 & b_0 \end{vmatrix} = 0$$

(b) En déduire une condition nécessaire et suffisante pour que le polynôme $P = X^3 + pX + q$ de $\mathbb{K}[X]$ ait une racine multiple.

1

3. Pour les courageux, généraliser la question 2)a) pour m et n des entiers quelconques.

2 Polynômes irréductibles

2.1 dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$

Exercice 2.1 (Théorème de D'Alembert-Gauss)

Soit P un polynôme de degré $n \ge 1$ c'est-à-dire :

$$P = \sum_{i=0}^{n} a_i X^i$$

- 1. (a) Démontrer qu'il existe $R \in \mathbb{R}^+$ tel que |P(z)| > |P(0)| pour tout complexe z tel que |z| > R.
 - (b) En déduire qu'il existe un nombre complexe z_0 tel que $|P(z_0)| = \inf_{z \in \mathbb{C}} |P(z)|$.
- 2. On va montrer que $P(z_0)=0$. On suppose que $P(z_0)\neq 0$ et on pose $h(X)=\frac{P(X+z_0)}{P(z_0)}\in \mathbb{C}[X]$, h est de degré n et on écrit $h(X)=1+\sum_{i=k}^n b_i X^i$ où $k=\min\{i\in \mathbb{N}^*/b_i\neq 0\}$.
 - (a) Montrer qu'il existe des nombres complexes $c_k, ..., c_n$ avec $c_k \neq 0$ tel que pour tout nombre complexe s:

$$h(\frac{s}{c_k}) = 1 - s^k + \sum_{i=k+1}^n c_i s^i.$$

(b) Montrer que pour tout $x \in]0;1[$,

$$\left| \sum_{i=k+1}^{n} c_i x^{i-k} \right| \ge 1.$$

(c) Conclure.

Exercice 2.2

- 1. Déterminer les polynômes irréductibles de $\mathbb{R}[X]$.
- 2. Décomposer en produit de facteurs irréductibles dans $\mathbb{R}[X]$ les polynômes suivants :
 - (a) $P_1 = X^5 1$.
 - (b) $P_2 = X^4 + X^2 2$.
 - (c) $P_3 = X^4 X^2 + 1$.

Exercice 2.3

- 1. Démontrer que le polynôme $P=48X^4-32X^3+1$ admet une racine double réelle. Factoriser P dans $\mathbb{R}[X]$.
- 2. On considère le polynôme $Q = 48X^5 + 32X^4 + 20X^3 X 1$.
 - (a) Démontrer, à l'aide de la question précédente, que Q admet une racine de la forme aj, où a est un nombre réel que l'on déterminera et où $j=e^{\frac{2i\pi}{3}}$.
 - (b) Factoriser Q dans $\mathbb{R}[X]$.

2.2 dans $\mathbb{Q}[X]$

Exercice 2.4

- 1. Démontrer que le polynôme $X^3 + 2X^2 + X 1$ n'admet pas de racine dans \mathbb{Q} . Qu'en déduit-on?
- 2. A l'aide de leur décomposition en facteurs irréductibles dans $\mathbb{R}[X]$, démontrer que les polynômes suivants sont irréductibles sur $\mathbb{Q}[X]$:
 - (a) $X^4 X^2 + 1$.
 - (b) $X^4 2$.

Exercice 2.5 (Critère d'Eisenstein)

Soit $P(X) = a_n X^n + a_{n-1} X^{n-1} + ... + a_1 X + a_0$ un polynôme de $\mathbb{Z}[X]$ de degré $n \ (n \ge 1)$ et p un nombre premier. On suppose que :

- -p ne divise pas a_n ;
- p divise a_i pour tout $i \in \{0, ..., n-1\}$;
- $-p^2$ ne divise pas a_0 .

L'objectif de cet exercice est de montrer que P est irréductible sur $\mathbb{Q}[X]$.

- 1. Démontrer tout d'abord que P ne peut pas s'écrire comme produit de deux polynômes non constants dans $\mathbb{Z}[X]$.
- 2. Démontrer que P est irréductible sur $\mathbb{Q}[X]$ (indication : Ecrire $uvP = Q_1.R_1$ où $u, v \in \mathbb{Z}$ et $Q_1, R_1 \in \mathbb{Z}[X]$ et considérer un facteur premier p de uv et montrer que p peut être mis en facteur dans Q_1 ou dans R_1).
- 3. Application : démontrer que $X^n 2$ est irréductible sur $\mathbb{Q}[X]$.

Exercice 2.6 (Polynômes cyclotomiques)

Soit n un entier supérieur ou égal à 1; on note \mathbb{U}_n les racines n- ième de l'unité dans \mathbb{C} .

- 1. (a) Démontrer que \mathbb{U}_n est un groupe (multiplicatif) cyclique d'ordre n.
 - (b) On note \mathbb{U}_n^* l'ensemble des racines *n*-ième primitives de 1. Combien en y a-t-il?
- 2. On appelle n-ième polynôme cyclotomique le polynôme :

$$\Phi_n = \prod_{\zeta \in \mathbb{U}_n^*} (X - \zeta) \,.$$

- (a) Démontrer que pour tout entier $n \ge 1$, $X^n 1 = \prod_{d|n} \Phi_d(X)$; en comparant les degrés quelle formule obtient-on?
- (b) En déduire $\Phi_1, , \Phi_2, ..., \Phi_8$.
- (c) Démontrer que pour tout entier $n \geq 1$, $\Phi_n \in \mathbb{Z}[X]$ (raisonner par récurrence sur n).
- (d) Démontrer que pour tout nombre premier p, Φ_p est irréductible sur $\mathbb{Q}[X]$ (appliquer le critère d'Eisenstein à $\Phi_p(X+1)$.

Remarque : on peut montrer que $\Phi_n(X)$ est irréductible sur $\mathbb{Q}[X]$ pour tout $n \geq 1$.

3 Nombres algébriques-nombres transcendants

Définition 1

Soit \mathbb{L} un corps commutatif, \mathbb{K} un sous-corps de \mathbb{L} , $a \in \mathbb{L}$. On dit que a est algébrique sur \mathbb{K} s'il existe un polynôme **non nul** $P \in \mathbb{K}[X]$ tel que P(a) = 0 sinon on dit qu'il est transcendant. On pose $I_a = \{P \in \mathbb{K}[X]/P(a) = 0\}$ et $K[a] = \{P(a)/P \in \mathbb{K}[X]\}$

Exemple : $\sqrt{2}$ et i sont algébriques sur $\mathbb Q$ car ils sont racines respectivement de X^2-2 et X^2+1 .

Exercice 3.1

- 1. Démontrer que $\sqrt{2+\sqrt{3}}$ est algébrique sur \mathbb{Q} .
- 2. Soit α un nombre algébrique. Démontrer qu'il existe un polynôme unitaire et irréductible de $\mathbb{Q}[X]$ non nul (appelé polynôme minimal de α sur \mathbb{Q}), noté P_{min} divisant tout polynôme annulant α .
- 3. Quel est le polynôme minimal $\sqrt[3]{2-\sqrt{3}}$?

Exercice 3.2

Soient \mathbb{L} un corps, \mathbb{K} un sous-corps de \mathbb{L} et $a \in \mathbb{L}$.

- 1. Démontrer que les propriétés suivantes sont équivalentes :
 - (a) a est algébrique sur \mathbb{K} .
 - (b) $\mathbb{K}[a]$ est un corps.
 - (c) $\mathbb{K}[a]$ est un \mathbb{K} -espace vectoriel de dimension finie.
- 2. L'objectif de cette question est de démontrer que l'ensemble M des éléments de $\mathbb L$ algébriques sur $\mathbb K$ est un corps.
 - (a) Démontrer que 0, 1 appartiennent à M et que si $x \in M$ et si $x \neq 0$ alors -x et x^{-1} aussi.
 - (b) Soit x et y des éléments de M.
 - i. Démontrer que $\mathbb{K}[x;y] = \mathbb{K}[x][y]$ est un \mathbb{K} -espace vectoriel de dimension finie (montrer tout d'abord que c'est un $\mathbb{K}[x]$ -espace vectoriel de dimension finie).
 - ii. En déduire que $x+y, \ x\times y$ appartiennent à M.
 - (c) Application : démontrer que $\sqrt[5]{3} \sqrt[3]{2}$ est algébrique.

Définition 2

Un ensemble E est dénombrable s'il existe une bijection de E sur \mathbb{N} .

Rappels:

- Si E est dénombrable alors E^n l'est aussi pour tout $n \in \mathbb{N}$.
- Une réunion dénombrable d'ensembles dénombrables est dénombrable.

Exercice 3.3

- 1. Expliquer rapidement pourquoi \mathbb{Z} et \mathbb{Q} sont dénombrables.
- 2. Démontrer que [0;1] n'est pas dénombrable (donc \mathbb{R} aussi)(indication : raisonner par l'absurde et ranger les réels en une seule suite (x_n) ,pour tout entier n, écrire le développement décimal de x_n et "construire" un réel y distinct de tous les x_n).
- 3. Démontrer que l'ensemble des nombres algébriques sur \mathbb{Q} est dénombrable (indication : on démontera tout d'abord que l'ensemble $\mathbb{Q}_n[X]$ des polynômes nul ou de degré inférieur à n $(n \ge 1)$ est dénombrable). Qu'en déduit-on?

Exercice 3.4 (Nombre de Liouville)

- 1. Soient α un nombre algébrique, n le degré du polynôme P_{min} minimal annulant α .
 - (a) Démontrer Tout d'abord que pour tout

$$(p;q) \in \mathbb{Z} \times \mathbb{N}^* | P_{min}\left(\frac{p}{q}\right) | \ge \frac{1}{q^n}$$

(b) Démontrer qu'il existe un réel positif k tel que :

$$\forall (p;q) \in \mathbb{Z} \times \mathbb{N}^*, \ 0 < |\alpha - \frac{p}{q}| < 1 \Rightarrow |\alpha - \frac{p}{q}| > \frac{k}{q^n}$$

(indication : appliquer le théorème des accroissements finis).

2. En déduire que $\alpha = \sum_{i=1}^{+\infty} \frac{1}{10^{i!}}$ est transcendant.