Algebra - Basic Definitions

What is an Equation

An equation says that two things are equal. It will have an equals sign " $=$ " like this:

$$
x+2=6
$$

That equation says: what is on the left $(x+2)$ is equal to what is on the right (6)
So an equation is like a statement "this equals that"

Parts of an Equation

So that people can discuss equations, there are names for different parts (better than saying "that thingy there"!)

Here we have an equation that says $4 x-7$ equals 5 , and all its parts:

A Variable is a symbol for a number we don't know yet. It is usually a letter like x or y .

A number on its own is called a Constant.
A Coefficient is a number used to multiply a variable (4 x means 4 times x, so 4 is a coefficient)

An Operator is a symbol (such as,$+ x$, etc) that represents an operation (ie you want to do something with the values).

A Term is either a single number or a variable, or numbers and variables multiplied together.

An Expression is a group of terms (the terms are separated by + or - signs)

So, now we can say things like "that expression has only two terms", or "the second term is a constant", or even "are you sure the coefficient is really 4?"

Exponent!

The exponent (such as the 2 in x^{2}) says how many times to use the value in
a multiplication.
(or index,
or power)
Examples:
$\mathbf{8}^{\mathbf{2}=\mathbf{8} \times \mathbf{8}=\mathbf{6 4}}$
$\mathbf{y}^{\mathbf{3}=\mathbf{y} \times \mathbf{y} \times \mathbf{y}}$
$\mathbf{y}^{\mathbf{2} \mathbf{z}=\mathbf{y} \times \mathbf{y} \times \mathbf{z}}$

Exponents make it easier to write and use many multiplications
Example: $\mathbf{y}^{4} \mathbf{z}^{\mathbf{2}}$ is easier than $\mathbf{y} \times \mathbf{y} \times \mathbf{y} \times \mathbf{y} \times \mathbf{z} \times \mathbf{z}$, or even $\mathbf{y y y y z z}$

Polynomial

Example of a Polynomial: $\mathbf{3 \mathbf { x } ^ { 2 }} \mathbf{+ x} \mathbf{- 2}$
A polynomial can have constants, variables and the exponents $\mathbf{0 , 1 , 2 , 3}, \ldots$
And they can be combined using addition, subtraction and multiplication, ... but not division!

A Polynomial

Not Polynomials

Monomial, Binomial, Trinomial

There are special names for polynomials with 1,2 or 3 terms:

$3 x y^{2}$	$5 x-1$	$3 x+5 y^{2}-3$
Monomial (1 term)	Binomial (2 terms)	Trinomial (3 terms)

Like Terms

"Like terms" are terms whose variables (and their exponents such as the 2 in x^{2}) are the same.
In other words, terms that are "like" each other. (Note: the coefficients can be different)

Examples:

Terms		
$7 x$	x	$-2 x$
$(1 / 3) x y^{2}$	$-2 x y^{2}$	$6 x y^{2}$

Why are they "Like Terms"
because the variables are all \mathbf{x}
because the variables are all $\mathbf{x y}^{\mathbf{2}}$

You can add like terms together to make one term:
Example: $7 \mathbf{x}+\mathbf{x}=8 \mathbf{x}$

Unlike Terms

If they are not like terms, they are called "Unlike Terms":

| Terms | | Why are they "Unlike Terms" |
| :--- | :--- | :--- | :--- |
| | \leftarrow these are all unlike terms | |

