Task 14: Why are there exactly Five Regular Polyhedra?

Below is Euclid's proof. Use the tool box to fill in the blanks.

1. Use Polydron ${ }^{\circledR}$ to build solids. What is the minimum number of faces to be connected at a vertex to build a 3D shape?
Each vertex of the solid must be formed by joining at least \qquad faces.
2. The sum of the angles formed by the faces at a vertex must be less than \qquad \therefore. Explanation (Use Polydron ${ }^{\circledR}$ as a help):
3. Since the angles at all vertices of all faces of a Platonic solid are identical, and at least
\qquad faces are joined at a vertex, the size of the angle of each face must be less than \qquad ${ }^{\circ}$.

As regular polygons of six or more sides have only angles of 120° or more, the shape of the face is limited to either a \qquad , a \qquad or a \qquad .
4. We now determine what is possible with these faces:

- Triangular faces: Each vertex of a regular triangle is 60°, so a solid made of triangles may have \qquad , \qquad , or \qquad triangles meeting at a vertex; these are the \qquad
\qquad , and \qquad respectively.
Note that 6 or more triangles meeting at a vertex gives an angle sum of _____ that is too \qquad _.
- Square faces: Each vertex of a square is 90°, so for such a polyhedron there is only one arrangement possible with \qquad faces at a vertex, and it gives the
\qquad .
- Pentagonal faces: each vertex is 108°; again, only one arrangement, of \qquad faces at a vertex is possible, the corresponding polyhedron is the
\qquad .

| three
 pentagon | dodecahedron
 large four$\quad 360$ | hexahedron
 tetrahedron | 120 five | three icosahedron | three |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| octahedron | triangle | square | three | | |

