Task 14: Why are there exactly Five Regular Polyhedra?

Below is Euclid's proof. Use the tool box to fill in the blanks.

1. Use Polydron[®] to build solids. What is the minimum number of faces to be connected at a vertex to build a 3D shape?

Each vertex of the solid must be formed by joining at least ______ faces.

2. The sum of the angles formed by the faces at a vertex must be less than _____°. Explanation (Use Polydron[®] as a help):

Since the angles at all vertices of all faces of a Platonic solid are identical, and at least ______ faces are joined at a vertex, the size of the angle of each face must be less than ______°.

As regular polygons of six or more sides have only angles of 120° or more, the shape of the face is limited to either a ______, a _____, or a ______.

- 4. We now determine what is possible with these faces:
- <u>Triangular faces</u>: Each vertex of a regular triangle is 60°, so a solid made of triangles may have _____, or _____ triangles meeting at a vertex; these are the _____, ____, or _____, and _____ respectively.

Note that 6 or more triangles meeting at a vertex gives an angle sum of ______° that is too ______.

- <u>Square faces</u>: Each vertex of a square is 90°, so for such a polyhedron there is only one arrangement possible with ______ faces at a vertex, and it gives the
- <u>Pentagonal faces</u>: each vertex is 108°; again, only one arrangement, of ______ faces at a vertex is possible, the corresponding polyhedron is the

three 360	dodecahedron		hexahedron	120	five	three	icosahedron	three
pentagon	large four	360	tetrahedron	octahe	dron	triangle	e square	three